FOSDEM'20 - Brussels, 2020-02-02

Tools and Mechanisms to Debug BPF Programs

Quentin Monnet
@geole

https://twitter.com/qeole

eBPF Programming

extended Berkeley Packet Filter:

e User-written programs, usually compiled from C (or Go, Rust, Lua...)
with clang/LLVM, to assembly-like bytecode

e Programs are injected into the kernel with the bpf() system call

e Verifier: programs terminate, are safe

In-kernel interpreter, JIT (Just-in-Time) compiler

Once loaded, programs can be attached to a hook in the kernel

® 64-bit instructions, 11 registers, 512 B stack, not Turing-complete

Additional features: “maps”, kernel helper functions, BTF, ...

Q. Monnet -+ Tools and Mechanisms to Debug BPF Programs

eBPF Workflow

C program \

Userspace eBPF bytecode
---------------- bpf()|syscall------===-=------

Kernel Verifier

(JIT compiler)

mn
.
[l |

Attach point

Q. Monnet -+ Tools and Mechanisms to Debug BPF Programs

eBPF Use Cases

Main use cases:
e Networking (tc, XDP: driver-level hook)

e Tracing, monitoring (think DTrace)

Socket filtering (cgroups)

Security (LSM, work in progress)

® And more!

Q. Monnet -+ Tools and Mechanisms to Debug BPF Programs

e (Reminder on eBPF... DONE)
e The tools to inspect eBPF objects, at each step of the workflow

e Getting familiar with bpftool

Next steps for BPF introspection and debugging

Q. Monnet -+ Tools and Mechanisms to Debug BPF Programs

Inspecting BPF Objects

Q. Monnet -+ Tools and Mechanisms to Debug BPF Programs

eBPF Workflow

C program

Userspace eBPF bytecode

(JIT compiler)

Q. Monnet -+ Tools and Mechanisms to Debug BPF Programs

Compile Time

Objective:

e Make sure the eBPF bytecode is generated as intended when compiling
from C to eBPF

Q. Monnet -+ Tools and Mechanisms to Debug BPF Programs

Compile Time: Compile and Dump

e Compile with clang/LLVM (or gcc, but fewer BPF features supported):

$ clang -02 -emit-1lvm -c sample.c -0 - | \
1lc -march=bpf -mcpu=probe -filetype=obj -o sample.o

e Dump instructions from object file with llvm-objdump (vz.0+)
(prior to kernel injection, relocation, rewrites)

$ 1lvm-objdump -d -r -print-imm-hex sample.o
sample.o: file format ELF64-BPF

Disassembly of section .text:

func:
o: b7 00 00 00 00 00 0O 00 ro = 0
1: 95 00 00 00 OO 00 00 00 exit

e |f -gis passed to clang, 1lvm-objdump -S can dump the original C code

Q. Monnet -+ Tools and Mechanisms to Debug BPF Programs

Compile Time, in Two Steps: eBPF Assembly

e Compile from C to eBPF assembly file

$ clang -target bpf -S -o sample.S sample.c
$ cat sample.S

.text
.globl func # -- Begin function func
.p2align 3

func: # @func

%bb.o:
re = 0
exit

-- End function
e ... Hack...

e Then compile from assembly to eBPF bytecode (LLVM v6.0+)
$ clang -target bpf -c -o sample.o sample.S

Q. Monnet -+ Tools and Mechanisms to Debug BPF Programs

eBPF Workflow
oo [

Userspace eBPF bytecode

Kernel Verifier

(JIT compiler)

Attach point

Q. Monnet -+ Tools and Mechanisms to Debug BPF Programs

Objective:

e Load program and pass the verifier, or understand why it is rejected
Resources:

e libbpf / bpftool / ip / tc / bec: load or list programs, manage objects

e Qutput from verifier logs, libbpf, kernel logs, extack messages
e Documentation (filter.txt, Cilium guide)

Q. Monnet -+ Tools and Mechanisms to Debug BPF Programs

The Kernel eBPF Verifier: Checking Programs for Safety

The verifier performs checks on control flow graph and individual insns:

Erroneous syntax (unknown or incorrect usage for the instruction)
Too many instructions or maps or branches

Back edges (i.e. loops, not bounded) in the control flow graph
Unreachable instructions

Jump out of range

Out of bounds memory access

Access to forbidden context fields (read or write)

Reading access to non-initialized memory (stack or registers)

Use of forbidden helpers for the current type of program

Use of GPL helpers in non-GPL program (mostly tracing)

Ro not initialized before exiting the program

Memory access with incorrect alignment

Missing check on result from map_lookup_elem() before accessing map
element

Q. Monnet -+ Tools and Mechanisms to Debug BPF Programs

The Kernel eBPF Verifier: Example message

Possible out-of-bound access to packet data (no check on packet length):

ip link set dev ethe xdp object sample.o

Prog section 'action' rejected: Permission denied (13)!

- Type: 6
- Instructions: 41 (o over limit)
- License: GPL

Verifier analysis:

0: (bf) r2 = ra

1: (7b) *(ubs *)(rie -16) = ra

2: (79) r1 = »(ubs *)(rie -16)

3: (61) r1 = x(u32 *)(r1 +76)

invalid bpf_context access off=76 size=4

Error fetching program/map!

Problem: error messages good for developers, but cryptic for newcomers

Q. Monnet + Tools and Mechanisms to Debug BPF Pro;

Make Sure to Get Verifier Information

Still, we do want the messages!

e Use debug flags when available
® Debug buffer for verifier logs (pass to bpf())
® Debug flag for libbpf
® Activate both in bpftool with --debug
e Interpret information:
® Search the docs, Documentation/networking/filter.txt, Cilium guide
® Read kernel code
® To do: some kind of documentation/FAQ detailing the errors?

Q. Monnet -+ Tools and Mechanisms to Debug BPF Programs

Program is Loaded: Introspection

We have passed the verifier! The program is loaded in the kernel

e For map and program introspection: bpftool

® List maps and programs
® |oad a program, pin it

® Dump program instructions (eBPF or JIT-ed)
® Dump and edit map contents

® etc.

We will come back to bpftool later

Q. Monnet -+ Tools and Mechanisms to Debug BPF Programs

BTF: BPF Type Format

BTF objects embed debug information on programs and maps
They are also use internally by the kernel for some advanced BPF features

e Embed BTF information when compiling programs:
Compile with LLVM v8+, use -g flag

® For maps, some wrapping needed in the C source code

struct my_value { int x, vy, z; };

struct {
int type;
int max_entries;
int xkey;
struct my_value xvalue;
} btf_map SEC(”.maps”) = {
.type = BPF_MAP_TYPE_ARRAY,
.max_entries = 16,
b
(See kernel commit abd29c931459)

Q. Monnet + Tools and Mechanisms to Debug BPF Pro;

BTF: BPF Type Format

Exemple: Program dump from kernel, with C source code

prog load 1b type cl er pinmaps

prog dump xlated pinned |

_ingr
alancer_ir

oid #)(long)ctx—data_end;
J(r6 +80)

Q. Monnet -+ Tools and Mechanisms to Debug BPF Programs

18/42

eBPF Workflow

o Y

Userspace eBPF bytecode
---------------- bpf()|syscall------===-=------

Kernel Verifier

(JIT compiler)

-
=

Attach point

Q. Monnet -+ Tools and Mechanisms to Debug BPF Programs

Objective:
e Understand why a program does not run as intended

Several solutions

Q. Monnet + Tools and Mechanisms to Debug BPF Pro;

Debugging at Runtime with bpf_trace_printk()

® eBPF helper bpf_trace_printk()
Prints to /sys/kernel/debug/tracing/trace
Example snippet:

const char fmt[] = "First four bytes of packet: %x\n”;
bpf_trace_printk(fmt, sizeof(fmt), =*(uint32_t =*)data);

Q. Monnet -+ Tools and Mechanisms to Debug BPF Programs

Debugging at Runtime with Perf Events

e “Perf event arrays”, more efficient than bpf_trace_printk()
Example: dump data from packet

struct bpf_map_def SEC("maps”) pa = {
.type = BPF_MAP_TYPE_PERF_EVENT_ARRAY,
.key_size = sizeof(int),
.value_size = sizeof(int),
.max_entries = 64,

b

int xdp_progi(struct xdp_md *xdp)

{
int key = 0;
bpf_perf_event_output(xdp, &pa, ex20ffffffffULL, Skey, 0);
return XDP_PASS;

}

e Contrary to bpf_trace_printk(), can be used with hardware offload

Q. Monnet -+ Tools and Mechanisms to Debug BPF Programs

Debug BPF with BPF

BPF can be used for tracing, and comes to the rescue

e Possible to attach tracing BPF programs at entry and exit of a
networking BPF program (Linux 5.5)
® E.g. get packet data in input and/or output of the program
® See tools/testing/selftests/bpf/progs/test_xdp_bpf2bpf.c and related
® Not sure if compatible with tracing programs?
e Use bcc or bpftrace to examine what happens in the kernel (can also be
used at verification time to follow verification steps)

Q. Monnet -+ Tools and Mechanisms to Debug BPF Programs

Testing Programs: BPF_PROG_TEST_RUN

BPF_PROG_TEST_RUN subcommand for the bpf() system call

e Manually run a program with given input data and context
e Qutput data and context are retrieved

Limitations:

Not available for all programs (mostly networking for now)
Tracing: How to check kernel data structures are changed?
Some BPF helpers hard to support (bpf_redirect() etc.)
Non-root accessibility would be nice?

(Proposal on the topic for next Netdev conference in March 2020)

Q. Monnet -+ Tools and Mechanisms to Debug BPF Programs

Statistics for Programs

Statistics for BPF programs: completion time and number of runs

e Activate (slight overhead) with:
sysctl -w kernel.bpf_stats_enabled=1

e Displayed by e.g. bpftool:

ime_ns 12210 run_cnt 53

Q. Monnet -+ Tools and Mechanisms to Debug BPF Programs

Debugging at Runtime: Miscellaneous

Additional tools that might be of use:
e Perf has support for annotating JIT-ed BPF programs (e.g. perf top)

e User space BPF machines: uBPF, rbpf
(Features missing, no verifier, but can run with debugger)

® tools/bpf/bpf_dbg.c (legacy cBPF only)

Q. Monnet -+ Tools and Mechanisms to Debug BPF Programs

eBPF Workflow

C program

LLVM Management

Userspace eBPF bytecode
---------------- bpf()

syscall====-========----

Kernel Verifier

(JIT compiler)

Attach point

mn
.
[l |

Q. Monnet -+ Tools and Mechanisms to Debug BPF Programs

User Space Programming

Objectives:

® Debug or enhance a program managing eBPF objects
e Generally improve eBPF support in the toolchain

Solutions:
e We can rely on existing frameworks (bcc, bpftrace, libkefir...)

e Libraries for managing eBPF programs: libbpf (kernel tree,
tools/1lib/bpf), libbce (bec tools)

Probe BPF-related kernel features with bpftool

e strace: support for bpf() system call
strace -e bpf ip link set dev nfp_pe xdpoffload obj prog.o

e valgrind: support for bpf() system call
valgrind bpftool prog show

Q. Monnet -+ Tools and Mechanisms to Debug BPF Programs

Getting Familiar With Bpftool

Q. Monnet -+ Tools and Mechanisms to Debug BPF Programs

Bpftool: List Programs

List all BPF programs loaded on the system

prog show

cgroup_skb tag 7be4B9e3934al25ba gpl

loaded_at 2019-02-25T12:16:54+0000 uid @

xlated 296B not jited memlock 40968 map_ids
cgroup_skb tag 2al42ef67aaadl74 gpl

loaded_at 2019-02-25T12:16:54+0000 uid @

xlated 296B not jited memlock 4096B map_ids
cgroup_skb tag 7be4B9e3934al25ba gpl

loaded_at 2019-02-25T12:16:55+0000 uid @

xlated 296B not jited memlock 40968 map_ids
cgroup_skb tag 2al42ef67aaadl74 gpl

loaded_at 2019-02-25T12:16:55+0000 uid @

xlated 296B not jited memlock 4096B map_ids
cgroup_skb tag 7be4B9e30934al25ba gpl

loaded_at 2019-02-25T12:16:56+0000 uid @

xlated 296B not jited memlock 4096B map_ids 6,7
cgroup_skb tag 2al42ef67aaadl74 gpl

loaded_at 2019-02-25T12:16:56+0000 uid @

xlated 296B not jited memlock 4096B map_ids 6,7
xdp name process_packet tag offloaded_to

loaded_at 2019-03-01T11:41:04+0000 uid ©

xlated 58488 - d 1 2B memlock 8192B map_ids 29,30

Q. Monnet -+ Tools and Mechanisms to Debug BPF Programs 30/42

Bpftool: Dump Programs

Dump kernel-translated instructions
bpftool prog dump xlated id 4
o: (b7) ro = 0
1: (95) exit

Dump JIT-ed instructions

bpftool prog dump jited id 4
o: push %rbp

1: mov %rsp,%rbp

4 sub $0x28,%rsp

b: sub $0x28,%rbp

f: mov %rbx,oxe(%rbp)
13: mov %r13,0x8(%rbp)
[...]

33: mov 0x18(%rbp),%ris
37: add $0x28,%rbp

3b: leaveq

3C: retq

Q. Monnet -+ Tools and Mechanisms to Debug BPF Programs

Bpftool: Load, Attach Programs

Load a program:

bpftool prog load <program> <pinned_path>

Attach to socket:

bpftool prog attach <program> <attach type> <target map>

Or to cgroups:

bpftool cgroup attach <cgroup> <attach type> <program> [flags]
Or to tc, XDP:

bpftool net attach <attach type> <program> <interface>

Q. Monnet -+ Tools and Mechanisms to Debug BPF Programs

Bpftool: Show Maps

List all maps loaded on the system:

map show

max_entries 1 memlock 40968
3: 1pm_trie ags G
key 20B ¢d1un 8B max_entries 1 memlock 40968
lpm_trie flags Ox1
key 8B walue 8B max_entries 1 memlock 4896B
5: lpm_trie flags 6=1
key 208 wvalue 8B max_entries 1 memlock 4096B
6: lpm_trie flags 0=1
key 8B walue 8B max_entries 1 memlock 4B96B
lpm_trie flags O=1
key 28B wvalue 8B max_entries 1 memlock 4096B
96: array name rules flags O=0
key 4B walue S6B max_entries 3 memlock 40968

Q. Monnet -+ Tools and Mechanisms to Debug BPF Programs 33/42

Bpftool: Basic Map Operations

Retrieve first entry of array map (note: host endianness for the key):

Or dump all entries of a given map:
bpftool map dump id 182
Update a map entry (even works for prog array maps used for tail calls)

bpftool map update id 182 key 3 ® @ © value 1 1 168 192

Q. Monnet -+ Tools and Me ms to Debug BPF Programs

Bpftool: Probe Kernel Features

Check what BPF-related features are available on the system,
List program types, map types, BPF helpers available:

Q. Monnet -+ Tools and Me s to Debug BPF Pro;

Bpftool: Test Runs

Test-run programs with user-defined input data and context:

Q. Monnet -+ Tools and Mechanisms to Debug BPF Programs

Some other features:

e List programs per cgroup, per network interface, per tracing hook

e Can load several programs at once from single object file (Loadall)

® Dump bpf_trace_printk() output: bpftool tracelog

® Dump data from event maps: bpftool map event_pipe id 42

e Generate skeleton header from .o file for management in user space

e Batch mode (bpftool batch file <file>)

® JSON support (-jl--json or -p|--pretty)

e Subcommand prefixes (bpftool p d i 42); Exhaustive bash completion
® And more!

See also https://twitter.com/qeole/status/1101450782841466880

Q. Monnet -+ Tools and Mechanisms to Debug BPF Programs

https://twitter.com/qeole/status/1101450782841466880

Bpftool: Man Pages

More information:

® man 8 bpftool
® man 8 bpftool-prog, man 8 bpftool-map, etc.

Q. Monnet -+ Tools and Mechanisms to Debug BPF Programs

Next Steps for eBPF Tooling and Debugging Facilities

Q. Monnet -+ Tools and Mechanisms to Debug BPF Programs

Next Steps for eBPF Tooling

® BPF architecture

® More modularity for easier debugging? (see BPF extension programs)
® More informations on BPF objects from sysfs
® Improvements for test runs

e Actual debugging process: Implement a step-by-step debugger

® Run program in a VM, and freeze/unfreeze at each step?
® Extend BPF_PROG_TEST_RUN interface?
® Attach kprobes to every single instruction of program?

e Documentation
® Update existing documentation
® (Create some troubleshooting guide/FAQ?

(Several of those ideas proposed for discussion at Netdev in March 2020)

Q. Monnet -+ Tools and Mechanisms to Debug BPF Programs

Wrapping Up

eBPF programs do not run in user space: debugging is not trivial

But:

Tooling is getting better and better: more tools, more complete

We can dump insns at any stage of the process (llvm-obdjump, bpftool)
We can print data (bpf_trace_printk(), perf event maps) at runtime
We can do test runs in kernel, or to run in user space BPF frameworks
BPF itself can be used to help debug verifier or other BPF programs

And hopefully more will come!

Q. Monnet -+ Tools and Mechanisms to Debug BPF Programs

Thank you!

Questions?

Q. Monnet -+ Tools and Mechanisms to Debug BPF Programs

	Inspecting BPF Objects
	Getting Familiar With Bpftool
	Next Steps for eBPF Tooling and Debugging Facilities

