
FOSDEM’20 • Brussels, 2020-02-01

Endless Network Programming
•

An Update from eBPF Land

Quentin Monnet
@qeole

https://twitter.com/qeole


Outline

• eBPF Basics

• New Features

• eBPF Universe

Q. Monnet • eBPF Update 2/18



eBPF Basics

Q. Monnet • eBPF Update 3/18



BPF Architecture

extended Berkeley Packet Filter

• Programs compiled from C (or Go, Rust, Lua): clang/LLVM backend
• bpf() syscall to inject into the kernel
• Verifier for safety and termination
• JIT (Just-In-Time) compiling (optional)
• Programs attached to a hook in kernel (socket, TC, XDP, kprobes…)

Characteristics:

• 64 bit instructions
• 11 registers
• 512 B stack
• Up to 4096 instructions (or up to 131,072 simulated by the verifier)

• No loops allowed

Q. Monnet • eBPF Update 4/18



BPF Architecture

extended Berkeley Packet Filter

• Programs compiled from C (or Go, Rust, Lua): clang/LLVM backend
• bpf() syscall to inject into the kernel
• Verifier for safety and termination
• JIT (Just-In-Time) compiling (optional)
• Programs attached to a hook in kernel (socket, TC, XDP, kprobes…)

Characteristics:

• 64 bit instructions
• 11 registers
• 512 B stack (→ but up to 1024 B with extension program)
• Up to 4096 instructions (or up to 131,072 simulated by the verifier)
→ Root: up to 1 million simulated instructions (v5.2)

• No loops allowed → Bounded loops (v5.3)

Q. Monnet • eBPF Update 5/18



Performance Improvements

Many performance improvements, for example:

• LLVM can favour 32-bit subregisters
Improved JIT efficency for 32-bit instructions on some architectures
(up to 40% fewer instructions) (v5.3)

• Batched map operations via new BPF commands for maps (v5.6)
Allow for faster processing
No need to cycle on entries, no risk to hit a deleted entry

• BPF_MAP_LOOKUP_BATCH
• BPF_MAP_LOOKUP_AND_DELETE_BATCH
• BPF_MAP_UPDATE_BATCH
• BPF_MAP_DELETE_BATCH

• AF_XDP gets some love, too

Q. Monnet • eBPF Update 6/18



New Features

Q. Monnet • eBPF Update 7/18



BTF: BPF Type Format

Close to DWARF, provides debug information for BPF programs and maps
E.g. Source code in C for BPF program:

Q. Monnet • eBPF Update 8/18



BTF: BPF Type Format

• Has been around since v4.18, but evolving a lot

• Generated by pahole or LLVM, verified in the kernel

• Kernel data embedded as BTF
• Needs CONFIG_DEBUG_INFO_BTF=y
• BTF data at /sys/kernel/btf/vmlinux
• Used to access struct fields directly, instead of (fragile) offset

• Necessary for CO-RE (Compile Once, Run Everywhere), for tracing mostly

• More and more features rely on it internally

Q. Monnet • eBPF Update 9/18



Global Data

• Global data support in C sources (v5.2)

• Global variables in .data, .rodata, .bss sections
Templating: Just update contents in those sections in object file

• Global data can be mmap()’ed for easier access (v5.5)

• Close to global data: external variables (v5.6)
(LINUX_KERNEL_VERSION and CONFIG_XXX)

Q. Monnet • eBPF Update 10/18



BPF Trampoline

• Converts native calling convention into BPF calling convention (v5.5)

• New way to attach BPF programs to k(ret)probes: fentry, fexit
Nearly zero overhead

• Such fentry/fexit programs can be attached to entry/exit of any
networking BPF program: see input and output packets for TC, XDP etc.

• BPF dispatcher: Reuse trampoline to avoid retpoline cost for XDP
programs (v5.6)

Q. Monnet • eBPF Update 11/18



Global Functions, Dynamic Linking

• Global (non-static) functions supported by libbpf (v5.5)

• Dynamic program extensions (v5.6)
New program type: BPF_PROG_TYPE_EXT, can dynamically replace a
placeholder global function

• Advantages:
• Dynamic policies
• Code reuse
• Shorter verification time

Q. Monnet • eBPF Update 12/18



BPF STRUCT_OPS

• Overwrite struct ops in kernel with BPF programs

• New program/map types:
BPF_PROG_TYPE_STRUCT_OPS, BPF_MAP_TYPE_STRUCT_OPS

• Example: struct tcp_congestion_ops can be replaced
to implement custom TCP congestion control (e.g. from DCTCP)

• The struct ops to replace need some wrapping in the kernel, though

Q. Monnet • eBPF Update 13/18



More to Come!

Developers in the community working on:

• XDP improvements
• Multi-buffer (jumbo-frames, packet header split, TSO/LRO)
• egress XDP

• Static linking (several object files merged into single program)

• Step-by-step debugging

• Not-networking use cases: LSM (Linux Security Module)

Q. Monnet • eBPF Update 14/18



eBPF Universe

Q. Monnet • eBPF Update 15/18



Tools and Projects

• bpftool / libbpf
• Support for BTF
• Generally: support for all new BPF features
• Can generate “skeleton” header from object file, very helpful for working
(and mmap()’ing) global data

• Katran (anti-DDoS, Facebook), Suricata (IDS), anti-DDoS (Cloudflare),
etc.

• Cilium: Many new features (see next presentation!)
Network, service and security observability tool: Hubble

• Tracing: Rezolus (Twitter), Sysdig, etc.

• “BPF as universal dataplane” project by big network players, early stage

Q. Monnet • eBPF Update 16/18



Wrapping Up

• BPF development extremely active

• New features, new use cases (and that was just for networking)

• More to come!

Q. Monnet • eBPF Update 17/18



Thank you!

Questions?

Q. Monnet • eBPF Update 18/18


	eBPF Basics
	New Features
	eBPF Universe

