
• Paris, 2019-05-16

All-Out Programmability in Linux
•

An Introduction to BPF as a Monitoring Tool

Quentin Monnet
<quentin.monnet@netronome.com>

@qeole

mailto:quentin.monnet@netronome.com
https://twitter.com/qeole

Speaker

Quentin Monnet

Fast networking: 6WIND then Netronome (since 2017)
Based in Cambridge, UK
Working on BPF for over 3 years

Netronome

Fabless semiconductor company, specialised in “SmartNICs”:
Multicore, massively parallel, fully programmable NPUs
~200 people, USA/South Africa/UK
Hardware offloads for several advanced networking features:
Open vSwitch, P4… BPF

Q. Monnet | All-Out Programmability in Linux with BPF 2/71

https://www.6wind.com/
https://www.netronome.com/

Agenda

What is BPF?

Using BPF for tracing, monitoring

Other use cases for BPF

Q&A

Q. Monnet | All-Out Programmability in Linux with BPF 3/71

BPF History and Architecture

Q. Monnet | All-Out Programmability in Linux with BPF 4/71

Performance and Programmability

Linux: kernel and user space

Kernel goes fast, lacks flexibility
User space programmable, no direct access to kernel structures

Kernel

User space

Performance

Flexibility
Linux

Kernel developers design well-bounded frameworks

Q. Monnet | All-Out Programmability in Linux with BPF 5/71

Performance and Programmability

Linux: kernel and user space

Kernel goes fast, lacks flexibility
User space programmable, no direct access to kernel structures

Kernel

User space

Performance

Flexibility
Linux

Get out of the box: Can we have programmability in the kernel?

Q. Monnet | All-Out Programmability in Linux with BPF 6/71

Kernel Programmability

Example: tcpdump

tcpdump -i eth0 tcp dst port 22 -d
(000) ldh [12] # Ethertype
(001) jeq #0x86dd jt 2 jf 6 # is IPv6?
(002) ldb [20] # IPv6 next header field
(003) jeq #0x6 jt 4 jf 15 # is TCP?
(004) ldh [56] # TCP dst port
(005) jeq #0x16 jt 14 jf 15 # is port 22?
(006) jeq #0x800 jt 7 jf 15 # is IPv4?
(007) ldb [23] # IPv4 protocol field
(008) jeq #0x6 jt 9 jf 15 # is TCP?
(009) ldh [20] # IPv4 flags + frag. offset
(010) jset #0x1fff jt 15 jf 11 # fragment offset is != 0?
(011) ldxb 4*([14]&0xf) # x := 4 * header_length (words)
(012) ldh [x + 16] # TCP dst port
(013) jeq #0x16 jt 14 jf 15 # is port 22?
(014) ret #262144 # trim to 262144 bytes, return packet
(015) ret #0 # drop packet

Filtering packets in kernel, to avoid useless copies to user space

This is a BPF program! tcpdump → libpcap → BPF bytecode → kernel

Q. Monnet | All-Out Programmability in Linux with BPF 7/71

Classic BPF (cBPF)

Berkeley Packet Filter

1993: BPF on BSD, for packet filtering (by Van Jacobson)
1997: ported to Linux

Architecture

In-kernel virtual machine
32-bit instructions, 2 registers (32-bit)
Use cases: packet filtering, security (segcomp)

Usage

int s = socket (PF_INET, SOCK_RAW, IPPROTO_TCP);
setsockopt(s, SOL_SOCKET, SO_ATTACH_FILTER,

&bpf_prog, sizeof(bpf_prog));

Q. Monnet | All-Out Programmability in Linux with BPF 8/71

Extended BPF (eBPF)

Time passes…

2013+: “eBPF” (extended BPF), Linux only
(Alexei Starovoitov, in the context of the IO Visor project)

Complete rework of BPF architecture

Q. Monnet | All-Out Programmability in Linux with BPF 9/71

eBPF Architecture

Kernel

User space

eBPF execution
engine

Q. Monnet | All-Out Programmability in Linux with BPF 10/71

eBPF Virtual Machine

eBPF basics

10 general purpose registers (+1 stack register), 64-bit
512-byte stack
New, larger set of instructions, closer to assembly

eBPF program object

Loaded from user space to kernel
Attached to a given hook
Run on events

Q. Monnet | All-Out Programmability in Linux with BPF 11/71

eBPF Program Types

BPF_PROG_TYPE_SOCKET_FILTER, // Packet filtering
BPF_PROG_TYPE_KPROBE, // Tracing (any function)
BPF_PROG_TYPE_SCHED_CLS, // Packet filtering (TC)
BPF_PROG_TYPE_SCHED_ACT, // Packet filtering (TC)
BPF_PROG_TYPE_TRACEPOINT, // Tracing (stable tracepoints)
BPF_PROG_TYPE_XDP, // Packet filtering (driver level)
BPF_PROG_TYPE_PERF_EVENT, // Tracing (Proc. Monit. Unit events)
BPF_PROG_TYPE_CGROUP_SKB, // Access control (IP ingress/egress)
BPF_PROG_TYPE_CGROUP_SOCK, // Access control (socket crea/ops/...)
BPF_PROG_TYPE_LWT_IN, // Network tunnels
BPF_PROG_TYPE_LWT_OUT, // Network tunnels
BPF_PROG_TYPE_LWT_XMIT, // Network tunnels
BPF_PROG_TYPE_SOCK_OPS, // Update socket options
BPF_PROG_TYPE_SK_SKB, // Socket redirection
BPF_PROG_TYPE_CGROUP_DEVICE, // Access control (device)
BPF_PROG_TYPE_SK_MSG, // Data stream filtering
BPF_PROG_TYPE_RAW_TRACEPOINT, // Tracing
BPF_PROG_TYPE_CGROUP_SOCK_ADDR, // Access control (socket binding)
BPF_PROG_TYPE_LWT_SEG6LOCAL, // Network tunnels
BPF_PROG_TYPE_LIRC_MODE2, // Infra-red remote control protocols
BPF_PROG_TYPE_SK_REUSEPORT, // Select socket to use
BPF_PROG_TYPE_FLOW_DISSECTOR, // Network processing
BPF_PROG_TYPE_CGROUP_SYSCTL, // Access control (procfs)
BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE, // Tracing

Q. Monnet | All-Out Programmability in Linux with BPF 12/71

eBPF Program Types

Lightweight Tunnel
Encapsulation

TC
(traffic control)

Cgroups

Perf Event

TracepointXDP
(network driver)

Sockets

Kprobe/Uprobe

Others to come?

Networking

Tracing/Monitoring

Flow Dissector

Infrared
Remote Control

eBPF

Different hooks
Different context: packet data, function arguments (tracing), …
Different semantics

Q. Monnet | All-Out Programmability in Linux with BPF 13/71

JIT-Compiler

Kernel

User space

JIT-compiler

eBPF execution
engine

Q. Monnet | All-Out Programmability in Linux with BPF 14/71

JIT-Compiler for Performance

Just-In-Time compilation: BPF instructions → native code

Alternative to kernel interpreter, brings performance

Supported architectures:
ARM32, ARM64, MIPS, PowerPC64, RiscV, Sparc64, s390, x86_32, x86_64

Hardware offload: NFP (Netronome)

May be enabled/disabled via sysctl:
sysctl -w net.core.bpf_jit_enable=1
Kernel config may force JIT to be used (because of Specter)

Q. Monnet | All-Out Programmability in Linux with BPF 15/71

System Call

Kernel

User space

JIT-compiler

bpf()
system call

eBPF execution
engine

Q. Monnet | All-Out Programmability in Linux with BPF 16/71

System Call – Manage BPF Objects

#include <linux/bpf.h>

int bpf(int cmd, union bpf_attr *attr, unsigned int size);

Control of BPF objects (programs, maps, etc.): e.g. load a program

See man bpf (but out-of-date)

C wrappers around bpf(): libbpf (shipped with kernel)

Q. Monnet | All-Out Programmability in Linux with BPF 17/71

Program Lifetime

How to keep a handle on a program?

1 Program (BPF bytecode) is loaded in the kernel with bpf()
2 bpf() returns a file descriptor to the program
3 The file descriptor is used to attach that program to a hook
4 Program is automatically removed by kernel when:

• All instances are detached
• File descriptor is closed

Keep a program loaded after loader exits?

Virtual file system (usually /sys/fs/bpf/), “bpffs”
Pin programs (with bpf()), remove with unlink() (e.g. rm <path>)
Programs kept as long as pinned in the virtual file system

Q. Monnet | All-Out Programmability in Linux with BPF 18/71

Verifier

Kernel

User space

JIT-compiler Verifier

bpf()
system call

eBPF execution
engine

Q. Monnet | All-Out Programmability in Linux with BPF 19/71

Verifier – Ensure Termination and Safety

a.k.a “The last rampart against evil [programs]”

BPF programs come from user space: make sure they terminate / are safe
Termination:

Direct Acyclic Graph (DAG), inspect instructions, prune safe paths
Maximum: 4096 instructions… OH WAIT now “up to 1 million” for root
No back edge (loops)

• Except function calls
• May change soon (bounded loops)

Safety:

No unreachable code, no jump out of range
Registers and stack states are valid for every instruction
Program does not read uninitialised registers/memory
Program only interacts with relevant context (prevent
out-of-bound/random memory access)
…

Q. Monnet | All-Out Programmability in Linux with BPF 20/71

Maps

Kernel

User space

JIT-compiler Verifier

Maps

bpf()
system call

eBPF execution
engine

Q. Monnet | All-Out Programmability in Linux with BPF 21/71

Maps

“Maps”: special kernel memory area accessible to a program

Shared between: several program runs, several programs, user space
Typically, “key/value“ storage: hash map, array
Some of them have a “per-CPU” version
Generally, RCU-protected; also, spinlocks now available in BPF

Kernel

User space

bpf()
system call

Tools

BPF program
A BPF map

BPF program
B

Q. Monnet | All-Out Programmability in Linux with BPF 22/71

Map Types

BPF_MAP_TYPE_HASH, // Hash map
BPF_MAP_TYPE_ARRAY, // Array
BPF_MAP_TYPE_PROG_ARRAY, // Store BPF programs for tail calls
BPF_MAP_TYPE_PERF_EVENT_ARRAY, // Stream info to user space
BPF_MAP_TYPE_PERCPU_HASH, // Per-CPU hash map
BPF_MAP_TYPE_PERCPU_ARRAY, // Per-CPU array
BPF_MAP_TYPE_STACK_TRACE, // Stack info for tracing
BPF_MAP_TYPE_CGROUP_ARRAY, // Store references to cgroups
BPF_MAP_TYPE_LRU_HASH, // Least-Recently-Used (cache)
BPF_MAP_TYPE_LRU_PERCPU_HASH, // Per-CPU Least-Recently-Used (cache)
BPF_MAP_TYPE_LPM_TRIE, // Longest-Prefix Match
BPF_MAP_TYPE_ARRAY_OF_MAPS, // Array of BPF maps
BPF_MAP_TYPE_HASH_OF_MAPS, // Hash map of BPF maps
BPF_MAP_TYPE_DEVMAP, // Redirect packet to device
BPF_MAP_TYPE_SOCKMAP, // Redirect packet to socket
BPF_MAP_TYPE_CPUMAP, // Redirect packet to CPU
BPF_MAP_TYPE_XSKMAP, // Redirect packet to AF_XDP socket
BPF_MAP_TYPE_SOCKHASH, // Redirect packet to socket
BPF_MAP_TYPE_CGROUP_STORAGE, // Store data per cgroup
BPF_MAP_TYPE_REUSEPORT_SOCKARRAY, // Select a socket for packet
BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE, // Per-CPU cgroup storage
BPF_MAP_TYPE_QUEUE, // Queue (FIFO)
BPF_MAP_TYPE_STACK, // Stack (LIFO)
BPF_MAP_TYPE_SK_STORAGE, // Store data per socket

Q. Monnet | All-Out Programmability in Linux with BPF 23/71

Helper Functions

Kernel

User space

JIT-compiler Verifier

Helper
functions

Maps

bpf()
system call

eBPF execution
engine

Q. Monnet | All-Out Programmability in Linux with BPF 24/71

Helper Functions – A Library for the Complex Bits

“Standard library” of functions implemented in the kernel

Can be called from BPF programs
Ease some tasks, manipulate maps, context, …, e.g.:

• Map lookup, update
• Get kernel time
• printk() equivalent
• Change packet size
• Redirect a packet
• Safely dereference a kernel pointer

Up to 5 arguments
Some of them restricted to GPL-compatible BPF programs

More than 100 helper functions in the kernel already

Q. Monnet | All-Out Programmability in Linux with BPF 25/71

Additional Features

Tail calls: “long jumps” into other BPF programs (max: 33 tail calls)

Function calls

BTF: BPF Type Format, for debug (and more)

Bounded loop: soon?

Q. Monnet | All-Out Programmability in Linux with BPF 26/71

Hardware Offload

Kernel

User space

Hardware

JIT-compiler Verifier

Helper
functions

Maps

bpf()
system call

Hardware
offload

eBPF execution
engine

Q. Monnet | All-Out Programmability in Linux with BPF 27/71

Hardware Offload

Hardware offload support for packet processing (Netronome)

… but let’s keep this for another time :-)

Q. Monnet | All-Out Programmability in Linux with BPF 28/71

Tooling

Kernel

User space

Hardware

JIT-compiler Verifier

Helper
functions

Maps

bpf()
system call

Tools

Hardware
offload

eBPF execution
engine

Q. Monnet | All-Out Programmability in Linux with BPF 29/71

Tooling – Compilation

Good news: Nobody writes BPF bytecode directly
Use the BPF clang/LLVM backend

Store BPF bytecode in ELF object file
Compile from C to BPF

clang -O2 -g -emit-llvm -c prog.c -o - | \
llc -march=bpf -mcpu=probe -filetype=obj -o prog.o

Other alternatives: Lua, Rust, …

Q. Monnet | All-Out Programmability in Linux with BPF 30/71

Workflow

Full BPF workflow:

1 Write a program in C
2 Compile with clang into ELF file
3 Get map information from ELF file, create maps (bpf())
4 Get program information from ELF file, load program (bpf())
5 Attach program (bpf() or other, depends on program type)
6 [Program runs…]
7 Detach program

Q. Monnet | All-Out Programmability in Linux with BPF 31/71

Tooling – Other BPF tools

Management, introspection: bpftool, perf

Network processing: iproute2 (ip, tc)

llvm-objdump: ELF file inspection

Higher-level tools: bcc, bpftrace, etc.

Q. Monnet | All-Out Programmability in Linux with BPF 32/71

Tracing and Monitoring

Q. Monnet | All-Out Programmability in Linux with BPF 33/71

Dynamic Tracing Tools, Before BPF

Disclaimer: I am not an expert in tracing!

You may have heard of…

ftrace
perf
SystemTap
LTTng
Sysdig
DTrace

Q. Monnet | All-Out Programmability in Linux with BPF 34/71

Dynamic Tracing on Linux – Getting the Data

Kprobes, kretprobes
• kprobes: patch the first instructions of the function to execute custom
code

• kretprobes: patch return address of the function to execute custom code
• Work for almost any (non-inlined) function, see /proc/kallsyms
• But kernel internals are not API, may evolve and break probing!

Uprobes, uretprobes
• Same thing as above, for user space applications

Tracepoints
• Specific break points added prior to compiling the kernel
• Disabled by default (no overhead), can be enabled (some overhead)
• Much more stable than kprobes between kernel versions
• E.g. all system calls have one
• User space version: USDT, a.k.a. “DTrace probes”

Perf_events
• Relies on CPU Performance Monitor Unit (PMU): software and hardware
counters

Other kernel modules
• Hack your own tracing system…

Q. Monnet | All-Out Programmability in Linux with BPF 35/71

Dynamic Tracing Tools

Tracer/Front-end Data sources Data collection
ftrace kprobe, uprobe, tracepoints, USDT ftrace (sysfs)
perf perf_events (+kprobes, tracepoints…) perf ring buffer

SystemTap kprobe, uprobe, tracepoints, USDT kernel module
LTTng Specific events, or user space tracing kernel module
Sysdig syscalls (not sure how) Sysdig ring buffer
DTrace DTrace probes… but not on Linux!

Limitations:

SystemTap and LTTng require building and inserting kernel modules

ftrace, perf, LTTng lack programmability

SystemTap not user friendly, could crash the kernel

Sysdig limited to system calls

DTrace very powerful but not in Linux kernel (Some out-of-tree ports available)

Q. Monnet | All-Out Programmability in Linux with BPF 36/71

BPF for Tracing

BPF can attach to:

kprobes/kretprobes
uprobes/uretprobes
tracepoints, USDT
perf_events

Data collection:

ftrace/sysfs
perf ring buffer
BPF maps

Advantages:

Programmable
Fast, secure
No kernel module

Q. Monnet | All-Out Programmability in Linux with BPF 37/71

What BPF Does

Typically, attaching a BPF program allows one to:

Examine the arguments of a function
Examine its context (PID, parent, stack, etc.)
Examine its return value (retprobes)
Aggregate, process all of these as desired
Collect statistics

BPF cannot be used to modify the behaviour of a function, the content of
its variables, etc.

Error injection (changing return value) possible

Q. Monnet | All-Out Programmability in Linux with BPF 38/71

BPF for Tracing – Limitations

BPF is not perfect

Recent framework
• Needs recent kernel, especially for latest features
• Still evolving a lot (but at least, no API break)

Still difficult to use on its own
• Programming not so easy (verifier is picky)
• Needs some time investment
• Debugging gets better but still needs some work

Q. Monnet | All-Out Programmability in Linux with BPF 39/71

Example Code!

Kprobe on do_sys_open(dfd, filename, flags): print file name, flags

#include <linux/ptrace.h>
#include ”bpf_helpers.h”

int trace_open(struct pt_regs *ctx, int dfd,
const char __user *filename, int flags)

{
u64 id = bpf_get_current_pid_tgid();
u32 pid = id >> 32;

bpf_trace_printk(”%d: open(%s, %x)\n”,
pid, filename, flags);

return 0;
}

(Some simplification on bpf_trace_printk(), but this is just a matter of adding the correct macro)

Q. Monnet | All-Out Programmability in Linux with BPF 40/71

Example Code – How to Run?

Reminder: all the steps you don’t want to take care of

1 Compile from C to BPF (ELF object file) with clang/LLVM
(Get all header inclusion right)

2 Perform ELF relocation steps
3 Extract BPF bytecode and map data from ELF file
4 Create maps if any (bpf())
5 Load program (bpf())
6 Attach program (perf_event_open(), ioctl())
7 Read and print collected data (sysfs, perf buffer)
8 Detach program

What can we do instead?

Q. Monnet | All-Out Programmability in Linux with BPF 41/71

BPF Tracing Tools: bcc, bpftrace, …

Q. Monnet | All-Out Programmability in Linux with BPF 42/71

Example Code – With bcc

bcc: Framework for BPF tools, mostly a set of Python wrappers

from bcc import BPF

b = BPF(text=”””
#include <uapi/linux/ptrace.h>

int trace_open(struct pt_regs *ctx, int dfd,
const char __user *filename, int flags)

{
u64 id = bpf_get_current_pid_tgid();
u32 pid = id >> 32;

bpf_trace_printk(”%d: open(%s, %x)\\n”,
pid, filename, flags);

return 0;
}
”””)
b.attach_kprobe(event=”do_sys_open”,

fn_name=”trace_open”).trace_print()

Q. Monnet | All-Out Programmability in Linux with BPF 43/71

https://github.com/iovisor/bcc/

Example Code – Output

./my_open_tracer.py
irqbalance-822 [006] 101740.269261: 0: 822: open(/proc/irq/8/smp_affinity, 8000)
irqbalance-822 [006] 101740.269277: 0: 822: open(/proc/irq/9/smp_affinity, 8000)
irqbalance-822 [006] 101740.269293: 0: 822: open(/proc/irq/10/smp_affinity, 8000)

nvim-15918 [013] 101741.705896: 0: 15918: open(/tmp/nvim0nCfpU/2.1.py, 88241)
sh-16847 [004] 101741.708720: 0: 16847: open(/etc/ld.so.cache, 88000)
sh-16847 [004] 101741.708765: 0: 16847: open(/lib/x86_64-linux-gnu/libc.so.6, 88000)
sh-16847 [004] 101741.708859: 0: 16847: open(/lib/x86_64-linux-gnu/libdl.so.2, 88000)
sh-16848 [015] 101741.709583: 0: 16848: open(/tmp/nvim0nCfpU/1.1.py, 8241)
git-16849 [016] 101741.710264: 0: 16849: open(/etc/ld.so.cache, 88000)

Q. Monnet | All-Out Programmability in Linux with BPF 44/71

bcc – Framework and Tools

bcc

Framework for BPF tools, mostly a set of Python wrappers
Also comes with a set of tools (87 tracing tools for now, +examples)

Q. Monnet | All-Out Programmability in Linux with BPF 45/71

https://github.com/iovisor/bcc/

bcc – List of Tools (2018)

Credits: Brendan Gregg

Q. Monnet | All-Out Programmability in Linux with BPF 46/71

bcc – Opensnoop

opensnoop: Monitor usage of open() system call

Attach a kprobe (and a kretprobe) to sys_do_open()

./opensnoop.py
PID COMM FD ERR PATH
1576 snmpd 11 0 /proc/sys/net/ipv6/neigh/lo/retrans_time_ms
1576 snmpd 11 0 /proc/sys/net/ipv6/conf/lo/forwarding
1576 snmpd 11 0 /proc/sys/net/ipv6/neigh/lo/base_reachable_time_ms
1576 snmpd 9 0 /proc/diskstats
1576 snmpd 9 0 /proc/stat
1576 snmpd 9 0 /proc/vmstat
1956 supervise 9 0 supervise/status.new
1956 supervise 9 0 supervise/status.new
17358 run 3 0 /etc/ld.so.cache
[...]

Kprobe stores command name, filename, fd in a map
Kretprobe retrieves info from map and prints it, with return value

Q. Monnet | All-Out Programmability in Linux with BPF 47/71

bcc – Capable

capable: Monitor usage of capabilities (permissions) on Linux

Attach a kprobe to cap_capable()

./capable.py
TIME UID PID COMM CAP NAME AUDIT
22:11:23 114 2676 snmpd 12 CAP_NET_ADMIN 1
22:11:23 0 6990 run 24 CAP_SYS_RESOURCE 1
22:11:23 0 7003 chmod 3 CAP_FOWNER 1
22:11:23 0 7003 chmod 4 CAP_FSETID 1
22:11:23 0 7005 chmod 4 CAP_FSETID 1
22:11:23 0 7005 chmod 4 CAP_FSETID 1
22:11:23 0 7006 chown 4 CAP_FSETID 1
22:11:23 0 7006 chown 4 CAP_FSETID 1
22:11:23 0 6990 setuidgid 6 CAP_SETGID 1
22:11:23 0 6990 setuidgid 6 CAP_SETGID 1
22:11:23 0 6990 setuidgid 7 CAP_SETUID 1
22:11:24 0 7013 run 24 CAP_SYS_RESOURCE 1
22:11:24 0 7026 chmod 3 CAP_FOWNER 1
22:11:24 0 7026 chmod 4 CAP_FSETID 1
[...]

Q. Monnet | All-Out Programmability in Linux with BPF 48/71

bcc – Bashreadline

bashreadline: See all commands entered in bash

Add a uretprobe (return probe, user space) to symbol readline in
/bin/bash

./bashreadline.py
TIME PID COMMAND
05:28:25 21176 ls -l
05:28:35 21176 echo ”Hello Sqreen”
05:29:04 3059 echo ”command from another shell”

See also sslsniff: user probes in SSL libs to dump unencrypted data

Q. Monnet | All-Out Programmability in Linux with BPF 49/71

bcc – CPU Profiling and Flame Graphs

Profile CPU usage: “flame graph” indicating how much time functions run

Poll software perf_event CPU_CLOCK, collect stack data
Info and flamegraph.pl script at https://github.com/brendangregg/FlameGraph
Also usable for Python stack, Ruby, PHP, C*, Java, Node.js, …

./profile.py -f 10 > data.out
$./flamegraph.pl data.out > graph.svg

Flame Graph Search

URL Classifier

[u..

Soc..
[unk..
WebE..

[..
Web Content

[unk..
[unkn..

[unknown] _..

sshdDO.. firefox

[u..
[unknown]

Composi..
[unknown]

[unknown]
[unk..

[unknown]

[unknown]
[unk..

[u..

[..

[..

[unknown]

Q. Monnet | All-Out Programmability in Linux with BPF 50/71

https://github.com/brendangregg/FlameGraph

bpftrace

Another BPF tracing tool, higher-level: bpftrace

Awk-like syntax
Sits on top of bcc
Embeds a number of built-in functions and variables
“Linux equivalent to DTrace”
Express programs as one-liners, or very short scripts
Also comes with a number of ready-to-use scripts
(Has very good documentation!)

Q. Monnet | All-Out Programmability in Linux with BPF 51/71

https://github.com/iovisor/bpftrace

bpftrace – Usage

Our simple example to monitor open():

bpftrace -e 'kprobe:do_sys_open { printf(”%d-%s: %s\n”, pid, comm, str(arg1)) }'

Approximative syntax:
probe_type:probe_target /filter/ { command block }

Variables include pid, nsecs, comm, cpu, arg0..argN, rand, …

Functions for printing, manipulating maps, drawing histograms…

Q. Monnet | All-Out Programmability in Linux with BPF 52/71

bpftrace – More Examples

Some on-liners from bpftrace documentation

Syscall count by program
bpftrace -e 'tracepoint:raw_syscalls:sys_enter { @[comm] = count(); }'

Read bytes by process
bpftrace -e 'tracepoint:syscalls:sys_exit_read /args->ret/ { @[comm] = sum(args->ret); }'

Read size distribution by process
bpftrace -e 'tracepoint:syscalls:sys_exit_read { @[comm] = hist(args->ret); }'

Count page faults by process
bpftrace -e 'software:faults:1 { @[comm] = count(); }'

Count LLC cache misses by process name and PID (uses PMCs)
bpftrace -e 'hardware:cache-misses:1000000 { @[comm, pid] = count(); }'

Profile user-level stacks at 99 Hertz, for PID 189
bpftrace -e 'profile:hz:99 /pid == 189/ { @[ustack] = count(); }'

Q. Monnet | All-Out Programmability in Linux with BPF 53/71

bpftrace – Histograms

Read size distribution by process, and present it as a histogram

bpftrace -e 'tracepoint:syscalls:sys_exit_read { @[comm] = hist(args->ret); }'
Attaching 1 probe...
^C

@[cat]:
[0] 1 |@@@@@@@@@@@@@@@@@ |
[1] 0 | |
[2, 4) 0 | |
[4, 8) 0 | |
[8, 16) 0 | |
[16, 32) 0 | |
[32, 64) 0 | |
[64, 128) 0 | |
[128, 256) 0 | |
[256, 512) 0 | |
[512, 1K) 3 |@@|
[1K, 2K) 1 |@@@@@@@@@@@@@@@@@ |

@[wc]:
[...]

Q. Monnet | All-Out Programmability in Linux with BPF 54/71

More BPF-Related Tools

ply: same principle as bpftrace (but older), no dependency on bcc

Sysdig: now with an alternative eBPF backend

perf: supports BPF programs, also helps for BPF introspection

bpfd: BPF daemon (target: containers)

BPFd: BPF daemon too (target: android devices)

Credits: Joel Fernandes

Q. Monnet | All-Out Programmability in Linux with BPF 55/71

https://github.com/iovisor/ply
https://github.com/draios/sysdig/wiki/eBPF
https://perf.wiki.kernel.org/index.php/Main_Page
https://github.com/genuinetools/bpfd
https://github.com/joelagnel/bpfd

BPF Tracing in the Wild

Monitoring systems with some BPF compatibility:

Prometheus: ebpf_exporter tool

Credits: Ivan Babrou, Cloudflare

Weave Scope has a plug-in for BPF

Some notable companies doing tracing and monitoring with BPF include
Netflix, Cloudflare, Facebook, Google

Q. Monnet | All-Out Programmability in Linux with BPF 56/71

https://github.com/cloudflare/ebpf_exporter
https://www.weave.works/oss/scope/

Other Use Cases for BPF

Q. Monnet | All-Out Programmability in Linux with BPF 57/71

Network Packet Processing

Major use cases for BPF

Filtering (firewalling)
Load balancing
Protection against DDoS

Hooks on sockets, TC (traffic control), XDP

Q. Monnet | All-Out Programmability in Linux with BPF 58/71

Network Packet Processing – XDP

Userspace

Kernel

Net device Net device
Packets

Network stack

tc ingress tc egress

Sockets

Historically: low performance for Linux kernel stack (socket buffers)
One core: ~2Mpps (far from 10Gb/s link: ~14Mpps)

Q. Monnet | All-Out Programmability in Linux with BPF 59/71

Network Packet Processing – XDP

Userspace

Kernel

Net device Net device
Packets

Network stack

tc ingress tc egress

Sockets

Performance reached in user space: DPDK
Cost: driver support required, polling, “out of kernel”, can be complex

Q. Monnet | All-Out Programmability in Linux with BPF 60/71

Network Packet Processing – XDP

Userspace

Kernel

Net device Net device
Packets

Network stack

tc ingress tc egress

Sockets

XDP

Forward
to stack

Drop
(or Abort)

Redirect to
any device

Edit and
bounce

XDP: low-level BPF hook (driver level, offload possible)
Cooperates with kernel stack, no reboot required for new protocols, …

Q. Monnet | All-Out Programmability in Linux with BPF 61/71

Network Packet Processing – bpfilter

bpfilter: Work-in-progress Linux kernel back-end for iptables

iptables rules transparently converted into BPF programs
Front-end (iptables) unchanged
End of “sequential filtering”
Better performance, security, hardware offload
Some of it in kernel 4.18+, not complete yet

Kernel

Userspace

bpfilter UMH
special thread

bpfilter.ko
module

Netfilter
subsystem

bpfilter
BPF hook

iptables

inject rules translates
rules to eBPF

Q. Monnet | All-Out Programmability in Linux with BPF 62/71

https://qmo.fr/docs/talk_20180316_frnog_bpfilter.pdf
https://cilium.io/blog/2018/04/17/why-is-the-kernel-community-replacing-iptables/

Network Packet Processing – Examples

Load balancing

Katran from Facebook
Facebook is one of BPF’s main contributors and users

Protection against DDoS

Droplet (not published), also from Facebook
Some work by Cloudflare

Fast packet capture

Suricata (Network IDS)

Switching, data plane programming

Open vSwitch (virtual switching: BPF-based data path in progress)
Target for P4 (forwarding plane description language)
DPDK: AF_XDP-based poll-mode driver

Q. Monnet | All-Out Programmability in Linux with BPF 63/71

https://code.fb.com/open-source/open-sourcing-katran-a-scalable-network-load-balancer/
http://netdevconf.org/2.1/session.html?zhou
https://blog.cloudflare.com/tag/ebpf/
http://suricata.readthedocs.io/en/latest/capture-hardware/ebpf-xdp.html?highlight=XDP#ebpf-and-xdp
http://vger.kernel.org/lpc_net2018_talks/ovs-ebpf-lpc18-presentation.pdf
https://p4.org/
https://www.dpdk.org/

Access Control

Concept

Allow or deny access to resources

Based on cgroups

Examples

(segcomp, with cBPF: AC on syscalls, e.g. for Firefox/Chrome)

Landlock: Modern BPF-based security framework, not merged yet

systemd: IP accounting for systemd services
Hence e.g. Ubuntu 18.04 having BPF programs loaded at startup

Q. Monnet | All-Out Programmability in Linux with BPF 64/71

http://man7.org/linux/man-pages/man2/seccomp.2.html
https://landlock.io/
http://0pointer.net/blog/ip-accounting-and-access-lists-with-systemd.html

Cilium

Cilium: “API-aware Networking and Security” for containers

BPF-based framework for ACLs in container clusters
Rules at multiple layers: L2 to L7 (API)
Avoid multiple traversal of the network stack for packets
Integration with multiple frameworks (K8s, Istio, Docker, etc.)

Also among the main contributors to BPF

Q. Monnet | All-Out Programmability in Linux with BPF 65/71

https://cilium.io/

Cilium – Architecture

Credits: Cilium Authors

Q. Monnet | All-Out Programmability in Linux with BPF 66/71

Wrapping up

Q. Monnet | All-Out Programmability in Linux with BPF 67/71

BPF

Berkeley Packet Filter

In-kernel virtual machine
BPF programs: verified, JIT-compiled, share data with user space
Programmability, security, performance

Use cases

Networking (Filtering, load-balancing, anti-DDoS, switching)
Tracing, monitoring
Access control
A few others… And new ones yet to come?

BPF development is extremely active!

Q. Monnet | All-Out Programmability in Linux with BPF 68/71

BPF for Tracing and Monitoring

BPF for tracing

Kernel and user space probes, tracepoints
No kernel module (or related safety issues)
Programmable (more complex use cases, data aggregation)
Very flexible, “endless possibilities”

But keep in mind…

Linux only
BPF, especially new features require recent kernels
Currently missing e.g. loops, BPF libraries, …
BPF alone can be complex to use

Main tools and wrappers

bcc
bpftrace (~DTrace for Linux)
ply, perf, BPFd, …

Q. Monnet | All-Out Programmability in Linux with BPF 69/71

The End

Thank You!

Discussion

Q. Monnet | All-Out Programmability in Linux with BPF 70/71

References

Some Additional resources

BPF and XDP Reference Guide
http://docs.cilium.io/en/latest/bpf/

Why is the kernel community replacing iptables with BPF?
https://cilium.io/blog/2018/04/17/why-is-the-kernel-community-replacing-iptables/

Linux BPF Superpowers
http://www.brendangregg.com/blog/2016-03-05/linux-bpf-superpowers.html

Linux tracing systems & how they fit together
https://jvns.ca/blog/2017/07/05/linux-tracing-systems/

Linux Extended BPF (eBPF) Tracing Tools
http://www.brendangregg.com/ebpf.html

Using eBPF in Kubernetes
https://kubernetes.io/blog/2017/12/using-ebpf-in-kubernetes/

eBPF Tooling and Debugging Infrastructure
https://www.slideshare.net/Netronome/ebpf-tooling-and-debugging-infrastructure

Compilations (Because there would be way too many things to list here)

Dive into BPF: a list of reading material
https://qmonnet.github.io/whirl-offload/2016/09/01/dive-into-bpf/

Awesome eBPF
https://github.com/zoidbergwill/awesome-ebpf

Q. Monnet | All-Out Programmability in Linux with BPF 71/71

http://docs.cilium.io/en/latest/bpf/
https://cilium.io/blog/2018/04/17/why-is-the-kernel-community-replacing-iptables/
http://www.brendangregg.com/blog/2016-03-05/linux-bpf-superpowers.html
https://jvns.ca/blog/2017/07/05/linux-tracing-systems/
http://www.brendangregg.com/ebpf.html
https://kubernetes.io/blog/2017/12/using-ebpf-in-kubernetes/
https://www.slideshare.net/Netronome/ebpf-tooling-and-debugging-infrastructure
https://qmonnet.github.io/whirl-offload/2016/09/01/dive-into-bpf/
https://github.com/zoidbergwill/awesome-ebpf

	BPF History and Architecture
	Tracing and Monitoring
	BPF Tracing Tools: bcc, bpftrace, …
	Other Use Cases for BPF
	Wrapping up

