
FOSDEM’18 • Brussels, 2018-02-03

The Challenges of XDP Hardware Offload

Quentin Monnet
<quentin.monnet@netronome.com>

@qeole

mailto:quentin.monnet@netronome.com
https://twitter.com/qeole


eBPF and XDP

Q. Monnet | XDP Hardware Offload 2/29



eBPF, extended Berkeley Packet Filter

Generic, efficient, secure in-kernel (Linux) virtual machine

Programs are injected and attached in the kernel, event-based

Lightweight Tunnel
Encapsulation

tc
(traffic control)

Cgroup v1/v2

Perf event

Tracepoint

XDP
(network driver)

Socket

Kprobe/Uprobe

Others to come?

Networking

Tracing / Monitoring

eBPF

Q. Monnet | XDP Hardware Offload 3/29



eBPF architecture

Evolution from former BPF version (cBPF, used by tcpdump)

Assembly-like instructions, 4096 maximum in a program

11 registers (64-bit), 512 bytes stack

Read and write access to context (for networking: packets)

LLVM backend to compile from C to eBPF (or from Lua, Go, P4, Rust, …)

In-kernel verifier to ensure safety, security

JIT (Just-in-time) compiler available for main architectures

Programs managed with bpf() system call, loaded with e.g. tc, ip

Q. Monnet | XDP Hardware Offload 4/29



eBPF features

Maps: key-value entries (hash, array, …), shared between eBPF
programs or with user space

Tail calls: “long jump” from one program into an other, context is
preserved

Helpers: white-list of kernel functions to call from eBPF programs: get
current time, print debug information, lookup or update maps, shrink
or grow packets, …

Max: 32 times

User program
Userspace

Kernel Tail calls
Maps

eBPF
program

Packets

Q. Monnet | XDP Hardware Offload 5/29



eBPF workflow

User program
(tc / ip / bcc tools…)

LLVM/clang

Verifier

Userspace

Kernel

C source code
bpf_prog.c

ELF-compiled eBPF
bpf_prog.o

bpf() syscall

JIT

User program

Maps

BPF program attached
and run

• Array
• Hashmap
• LPM
• …

Q. Monnet | XDP Hardware Offload 6/29



XDP, eXpress Data Path

Introduced in Linux 4.8

eBPF hook at the driver level (ingress)
Intercept packet before it reaches the stack, before allocating sk_buff

Rationale: implement a faster data path which is part of the kernel,
maintained by the kernel community

Rather for simple use cases. Complex processing: forward to stack

Not a “kernel bypass”, works in cooperation with the networking stack

Q. Monnet | XDP Hardware Offload 7/29



XDP architecture

Userspace

Kernel

Network stack

tc ingress tc egress

Net device Net device
Packets

Sockets

Q. Monnet | XDP Hardware Offload 8/29



XDP architecture

Userspace

Kernel

Network stack

tc ingress tc egress

Net device Net device
Packets

Sockets

Q. Monnet | XDP Hardware Offload 9/29



XDP architecture

Userspace

Kernel

Network stack

tc ingress tc egress

Net device Net device
Packets

Sockets

XDP

Forward
to stack

Drop
(or Abort)

Redirect to
any device

Edit and
bounce

Q. Monnet | XDP Hardware Offload 10/29



Use cases for eBPF and XDP

Load balancing

Protection, mitigation against DDoS

Distributed firewall

And a lot more
• Packet capture (Suricata)
• Network fabric (OVN), Container ACLs (Cilium)
• Virtual switching: Open vSwitch back-end
• Stateful processing (BEBA research project)
• ILA (Identifier-Locator Addressing) routing
• QoS
• …

Q. Monnet | XDP Hardware Offload 11/29



eBPF Hardware Offload

Q. Monnet | XDP Hardware Offload 12/29



Lower, faster

Why offloading to hardware?

eBPF is nearly “self-contained”, XDP is low-level: ideal for offload

Get performances, and get programmability — without putting the
charge on CPUs

Work with the kernel: push hardware offload support upstream
Still requires NIC and firmware, but make driver and eBPF core
available to the community

Q. Monnet | XDP Hardware Offload 13/29



The Challenges of eBPF Hardware Offload

1 Get the correct architecture

Q. Monnet | XDP Hardware Offload 14/29



Mapping eBPF to the NFP-based NIC

General Purpose
Registers

LMEM (1 kB)

Thread (4 per core)

Core (60 used for eBPF)

CTM − Cluster Target
Memory (256 kB)

CLS − Cluster Local
Scratch (64 kB)

Island (6 per chip)

Chip

NIC

IMEM (4 MB)

DRAM (2 GB)

Driver

11 Registers
(64 bit, 32 bit subregisters)

Stack
(512 bytes)

Maps
(varying size)

Q. Monnet | XDP Hardware Offload 15/29



JIT compiler, 32-bit eBPF, Optimisations

How to get a program we can run?

The driver has its own JIT, called by the kernel, and compiles to native
instructions for the NIC.

NIC has 32-bit registers: eBPF 32-bit support in the kernel

Various optimisations in the JIT to reduce the number of instructions
or speed up some tasks

Q. Monnet | XDP Hardware Offload 16/29



The Challenges of eBPF Hardware Offload

1 Get a compatible architecture
• NIC architecture
• Add 32-bit support for eBPF
• Use own JIT-compiler

2 Add offload support to the kernel

Q. Monnet | XDP Hardware Offload 17/29



Support for eBPF offload in kernel and driver

Userspace

Kernel
bpf() syscall

• program instructions
• program length
• type (cls, XDP, kprobe…)
• …

Verifier

TC cls_bpf

file descriptor

ELF-compiled eBPFC code

Verification

Modification JIT

eBPF program

User program
(tc / ip / bcc tools…)

Q. Monnet | XDP Hardware Offload 18/29



Support for eBPF offload in kernel and driver

Userspace

Kernel
bpf() syscall

• program instructions
• program length
• type (cls, XDP, kprobe…)
• …

Verifier

TC cls_bpf

file descriptor

ELF-compiled eBPFC code

Verification

Modification JIT

Find device
eBPF program

User program
(tc / ip / bcc tools…)

Driver ndo_setup_tc()

TXRX XDP

Driver operations

Prepare verifier

XDP attach

Check instruction

Destroy

Translate

ndo_bpf()

Offload object

Offloaded

• ifindex

Q. Monnet | XDP Hardware Offload 19/29



Support for eBPF offload in kernel and driver

Userspace

Kernel
bpf() syscall

• program instructions
• program length
• type (cls, XDP, kprobe…)
• …

Verifier

TC cls_bpf

file descriptor

ELF-compiled eBPFC code

Verification

Modification JIT

Find device
eBPF program

User program
(tc / ip / bcc tools…)

Driver ndo_setup_tc()

TXRX XDP

Driver operations

Prepare verifier

XDP attach

Check instruction

Destroy

Translate

ndo_bpf()

Offload object

Offloaded

• ifindex

Q. Monnet | XDP Hardware Offload 20/29



Some notes on eBPF offload support in the kernel

The verifier uses a callback to check each instruction from the driver
perspective

The driver has its own errors that we must expose to users:
• Verification time: reuse the log buffer from kernel verifier → STD_ERR
• Program attachment time: use Netlink extended ack → STD_ERR

Q. Monnet | XDP Hardware Offload 21/29



The Challenges of eBPF Hardware Offload

1 Get a compatible architecture
• NIC architecture
• Add 32-bit support for eBPF
• Use own JIT-compiler

2 Add offload support to the kernel
• Update verifier
• Make the core able to pass eBPF maps and programs
• Keep it human-friendly

3 Update the tools

Q. Monnet | XDP Hardware Offload 22/29



Tooling

Upgrade tools for handling offloaded programs (tc, ip)
• Update command syntax
• Pass the ifindex to the kernel
• Also ask kernel to create maps on the NIC

Create or update other tools to help working with eBPF
• bpftool

List, load, pin, dump instructions (JIT-ed or not) for programs
List, pin, dump, lookup, update, delete for maps
List, attach, detach programs to cgroups

• llvm-mc: Compile from “eBPF assembly” to object file

Q. Monnet | XDP Hardware Offload 23/29



The Challenges of eBPF Hardware Offload

1 Get a compatible architecture
• NIC architecture
• Add 32-bit support for eBPF
• Use own JIT-compiler

2 Add offload support to the kernel
• Update the verifier
• Make the core able to pass eBPF maps and programs
• Keep it human-friendly

3 Update the tools
• tc, ip, llvm-mc, bpftool

4 Gain better performances, everywhere you can!

Q. Monnet | XDP Hardware Offload 24/29



What we have

tc_cls and XDP hardware offload (specific JIT)

32-bit sub-registers support

Various JIT optimisations

Nearly all instructions supported; Stack; Some helpers

Direct packet access, packet modification (header or payload)

XDP actions: Bounce, Pass to stack, Drop; Packet encapsulation

Maps: hashes and arrays (RO from program, R/W from user space)

Error messages through integration with kernel verifier, extack

Tooling
• tc, ip updated
• bpftool
• llvm-mc

Q. Monnet | XDP Hardware Offload 25/29



Performances

Simple XDP load balancer (~ 800 eBPF insns, 4 map lookups)
• Based on kernel test tools/testing/selftests/bpf/test_l4lb.c,
combined with example samples/bpf/xdp_tx_iptunnel_kern.c

Per CPU array changed to standard array to run offloaded
• (No nice equivalent for per CPU at the moment on the NIC)

Q. Monnet | XDP Hardware Offload 26/29



What we work on

Redirect action
Atomic add operation
Map caching: map access from ~1000 to ~300 cycles
Packet caching: packet accesses from ~50 to ~3 cycles
32-bit ALU from LLVM where possible: ALUs from ~4 to 1 machine code
instruction
Remove firmware locks for maps: double memory bandwidth
Tail calls; Multi-stage processing, split between NIC and host

XDP 1
XDP 2

XDP 3
XDP 4

XDP 5
XDP 6

NIC Host

Dump NFP instructions with bpftool: need patching binutils-dev
More JIT optimisations
…

Q. Monnet | XDP Hardware Offload 27/29



The Challenges of eBPF Hardware Offload

eBPF and XDP introduce fast and efficient networking inside Linux
kernel

Host CPU is a resource and must be used efficiently
Getting faster networking without increasing CPU usage requires an
efficient and transparent general offload infrastructure in cooperation
with the kernel

eBPF, XDP offload provides programmability and performances, but
also a dynamically reloadable sandbox

Kernel, driver: everything is upstream!

Q. Monnet | XDP Hardware Offload 28/29



Thank you!

Questions?

Additional resources:

Open-NFP.org platform, with resources about eBPF offload
https://open-nfp.org/dataplanes-ebpf/

Resources on BPF — Dive into BPF: a list of reading material
https://qmonnet.github.io/whirl-offload/2016/09/01/dive-into-bpf/

Upstream driver, eBPF bits
Linux kernel tree, under drivers/net/ethernet/netronome/nfp/bpf

Netronome website
https://www.netronome.com/ We’re hiring!

Q. Monnet | XDP Hardware Offload 29/29

https://open-nfp.org/dataplanes-ebpf/
https://qmonnet.github.io/whirl-offload/2016/09/01/dive-into-bpf/
https://www.netronome.com/

	eBPF and XDP
	eBPF Hardware Offload

