FOSDEM'17
Brussels, 2017-02-04

Stateful packet processing with eBPF:

An implementation of OpenState interface

Quentin Monnet
<quentin.monnet@6bwind.com>

@qgeole

CoOwWIND

mailto:quentin.monnet@6wind.com
https://twitter.com/qeole

Agenda

I'll speak at FOSDEM

QO will talk about:

- OpenState,
© 40%
© - eBPF,
O 60%
o

Me

Agenda

Coming too! I'll speak at FOSDEM
'll have a talk O will talk about:
on eBPF! O . OpenState'
/ 40%
° - eBPF,
O 60%
o

Daniel B. Me

Agenda

Coming too! I'll speak at FOSDEM
'll have a talk O will talk about:
on eBPF! O . OpenState'
/ . 3 70%
- eBPF,

O 9 30%

Daniel B. Me

SDN: hosts, VMs, programmable switches, controllers...

Controller

Internet

Router

Hypervisor —m
—x

Two paths for dataplane

SDN
controller

Switch

Shortcut

Most packets goes through the “shortcut” dataplane
Some packets are sent as exceptions—this generally includes stateful
processing

What about: bringing back some control into the switch?
SDN
controller

Switch //Standard path
— > pumy =

OpenState path

Can we make the switch “smarter”, without loosing SDN benefits?
How could we abstract stateful packet processing, in such a way the
controller can easily set up the switches?

* Kk

* *

* *

e O i
European

BEhavioural BAsed forwarding Commission

Horizon 2020

Objectives:

Wire-speed-reactive control/processing tasks inside the switches
Centralized control

Scalability

Platform-independent

From January 2015 to March 2017 (27 months)
More info at http://www.beba-project.eu/

http://www.beba-project.eu/

BEBA: Who?
NEC cni s,
-

THALES ElScba

-~ ®
@INDH

BEBA switch

BEBA
switch

OpenState InSP

(stateful processing) (packet generation)

OpenState: stateful packet processing

Forwarding depends on traffic previously observed

© Lookup for flow state
© Lookup for action associated to flow state, perform action
© Update state to new value

So we need two tables: a state table and a table for actions: XFSM table
(eXtended Finite State Machine)

State update

Packet ‘ :
pattern State Action

» —

State table XFSM table

Case study: port knocking

PR
10.2.2.2
10111
[————
=\ & —x
Clients
HHH] =
10.3.3.3 Switch Server

Clients see port 22 of the server as closed

To access port 22, they first have to send a secret packet sequence to
that port

Our example secret sequence: UDP packet on port 1111, 2222, 3333 then 4444

Case study: port knocking

Initial
state

Any other packet;

packet or timeout

on port

upp
packet
on port 3333

upp
packet
on port 2222

UDP packet
on port 4444

AlLTCP packets to
port 22 are forwarded.
Packets to other
ports are dropped.

Connection on
TCP port 22
is open

State table

Tracks current state for each flow

Flow matching pattern State

IP src = any DEFAULT

XFSM table

To state and “event” pattern, associates action and “next state”

Flow matching pattern ‘ Actions
State Event ‘ Action Next state
DEFAULT UDP dst port = 1111 Drop STEP_1
STEP_1 UDP dst port = 2222 | Drop STEP_2
STEP_2 UDP dst port = 3333 | Drop STEP_3
STEP_3 UDP dst port = 4444 | Drop OPEN
OPEN TCP dst port 22 Forward OPEN
OPEN Port = * Drop OPEN
* Port = * Drop DEFAULT

“Next state” is used to update the entry for this flow in the state table

State table update

The state of the flow is updated for each packet, thus unrolling the
port knocking sequence

Flow matching pattern State

IP src =10.3.3.3, IP dst = 10.1.11 STEP_1

IP src = any DEFAULT

Can we implement that with eBPF?

eBPF ~ extended Berkeley Packet Filter
Assembly-like language, based on cBPF (packet filtering)
Programs come from user space, run in the kernel

Csource code ELF-compiled BPF
bpf_prog.c bpf_prog.o

%

LLVM/clang

Y
Userspace

User program

bpf()syscall f--------ccmommmmono.

1s_bpf:
i B

Network stack f
f»_w

tcmgress | | tc egress

Stateful eBPF

Default behavior: program is run to process a packet, no state
preserved on exit

However: eBPF Maps (kernel 3.18+):

+ Memory area accessible from eBPF program through specific kernel
helpers

+ Arrays, hash maps (and several other kinds)

- Persistent across multiple runs of an eBPF program

+ Can be shared with other eBPF programs

+ Can be shared with userspace applications

- Let’s use hash maps for OpenState tables!

(https://github.com/gqmonnet/pkpoc-bpf)

https://github.com/qmonnet/pkpoc-bpf

openstate.h

/* State table x/

struct StateTableKey {
uint16_t ether_type;
uint32_t ip_src;
uint32_t ip_dst;
H
struct StateTableval {
int32_t state;

H
/* XFSM table =/

struct XFSMTableKey {
int32_t state;
uint8_t ls4_proto;
uinti6_t src_port;
uint16_t dst_port;

IH

struct XFSMTableval {
int32_t action;
int32_t next_state;

portknocking. c: State table lookup

~

* [Truncated]

* Parse headers and make sure we have an IP packet, extract src and dst

+* addresses; since we will need it at next step, also extract UDP src and dst
* ports.

*

state_idx.ether_type = ntohs(ethernet->type);
struct StateTableKey state_idx;
state_idx.ip_src = ntohl(ip->src);
state_idx.ip_dst = ntohl(ip->dst);

/* State table lookup */
struct StateTableval xstate_val = map_lookup_elem(&state_table, &state_idx);

if (state_val) {
current_state = state_val->state;
/* If we found a state, go on and search XFSM table for this state and
* for current event.
*/
goto xfsmlookup;

goto end_of_program;

portknocking.c: XFSM table lookup, state table update, action

/% Set up the key */

xfsm_idx.state = current_state;
xfsm_idx.ls4_proto ip->next_protocol;
xfsm_idx.src_port 0;
xfsm_idx.dst_port dst_port;

/* Lookup =/
struct XFSMTableval #xfsm_val = map_lookup_elem(&xfsm_table, &xfsm_idx);

if (xfsm_val) {

/* Update state table entry with new state value x/
struct StateTableval new_state = { xfsm_val->next_state };
map_update_elem(&state_table, &state_idx, &new_state, BPF_ANY);

/* Return action code */
switch (xfsm_val->action) {
case ACTION_DROP:
return TC_ACT_SHOT;
case ACTION_FORWARD:
return TC_ACT_OK;
default:
return TC_ACT_UNSPEC;

Compile and run

One would compile the complete program into eBPF with:
$ clang -02 -emit-1lvm -c openstate.c -o - | \
1lc -march=bpf -filetype=obj -o openstate.o
... and attach it with, for example:
tc qdisc add dev ethe clsact
tc filter add dev ethe ingress bpf da obj openstate.o

One more thing: initialize the maps (user-space program with bpf ()
syscall)

Alternative method: bcc’s Python wrappers provide an easier way to
initialize maps, to compile and to inject programs

Result

rootgbpfsync
ient] Sendir

1
1
1
1
3
1
1
1

Quentin Monnet (6WI | BEBA — OpenState and eBPF

Second case study: token bucket

Token bucket algorithm

Bucket capacity: 4 tokens

Packet i
Token generation: 1/Q

N N
—_— lTO

Case 1
(normal traffic) | | | .
Forward = time
Tmin Tmax
W_next
Packet
Case 2
oo T L T LD 1V .
Forward == time
Tmin Tmax
W_next
Packet
Case 3
meaioa | Q4] |] T,
Drop ' time
Tmin Tmax

W_next

Model side: Open Packet Processor

Extension of OpenState:
- With global and per-flow registers

* Registers evaluated with a set of conditions

+ XFSM table lookup must also match on conditions

For token bucket: registers for Tmin and Tmax, then evaluate

conditions:
«cond1 = (t 2 Tmin); <cond2 = (t < Tmax)
- cond1 == true && cond2 == true - Case1
- cond1 == true &§& cond2 == false - Case2
+ cond1 == false - Case 3

(https://github.com/gmonnet/tbpoc-bpf)

https://github.com/qmonnet/tbpoc-bpf

OPP: architecture

pkt,
FIK

extractor

flow-specific global (shared)

registriesD=R U G={R,R, ...

FIK = Flow Identifier Key

Condition
block

Ry | Ry R pkt, state, R
>
Progr.
Boolean
G circuitry
FIK,
state,
Update logic !
block | = Gn pkt, state, C

Array of ALUs

pkt,

FIK,

Update key

'R, Gy

G\

yoer G}

o

extractor

MATCH ACTIONS
packet | next | packet | update
G =& == field | state | actions | functions

pkt,
actions

Update

functions

eBPF side

Arrival time of the packet: there is a helper (ktime_get_ns())

Conditions: can be defined in each program, we need to encode the
result to store it in the tables

uintés4_t

tnow =

ktime_get_ns();

/* State table lookup */
state_val = map

current_state

tmin
tmax

_Tlookup_elem(&state_table, &state_idx);

state_val->state;
state_val->ri1;
state_val->r2;

/+ Evaluate conditions =/
int32_t cond1 =
int32_t cond2 =
if (cond1 == ERROR || cond2 == ERROR)

goto error;

check_condition(GE, tnow, tmin);
check_condition(LE, tnow, tmax);

/* XFSM table lookup =/

xfsm_idx
xfsm_idx
xfsm_idx
xfsm_val

.state
.cond1
.cond2
= map_

= current_state;

= cond1;

= cond2;

lookup_elem(&xfsm_table, &xfsm_idx);

Tables: just add the registers, we have everything else already

Result

Quentin Monnet (6WIND) | BEBA — OpenState and eBPF

Additional use cases for OpenState and OPP

QoS, load balancer

DDoS detection and mitigation as middle box application or at
network level

In-switch ARP handling in datacenter

Forwarding consistency

Failure detection and recovery

Conclusion

eBPF makes a nice target for BEBA architecture (OpenState, Open
Packet Processor)

Some limitations:

+ no wildcard mechanism for map lookup (yet)
+ locks for concurrent access?

Next step:

+ With XDP (hook in the driver instead of tc interface)?
+ High-level description language to generate the program

More implementations, by other project partners:

+ Reference implementation: ofsoftswitch
+ Acceleration with PFQ (controller: Ryu)
- Acceleration with DPDK, running on a FPGA

Thank you!

uentin Monne

Resources

BEBA project web page
http://www.beba-project.eu/

BEBA repositories: reference implementations of BEBA switch and controller
https://github.com/beba-eu

OpenState article (SIGCOMM 2014)
http://openstate-sdn.org/pub/openstate-ccr.pdf

Open Packet Processor article (TBP)
https://arxiv.org/abs/1605.01977

Code for the port knocking proof-of-concept in eBPF
https://github.com/gmonnet/pkpoc-bpf

Code for the token bucket proof-of-concept in eBPF
https://github.com/gmonnet/tbpoc-bpf

Resources on BPF — Dive into BPF: a list of reading material
https://gmonnet.github.io/whirl-offload/2016/09/01/dive-into-bpf/

GitHub repository of the 10 Visor project (bcc tools, documentation, and more)
https://github.com/iovisor/

http://www.beba-project.eu/
https://github.com/beba-eu
http://openstate-sdn.org/pub/openstate-ccr.pdf
https://arxiv.org/abs/1605.01977
https://github.com/qmonnet/pkpoc-bpf
https://github.com/qmonnet/tbpoc-bpf
https://qmonnet.github.io/whirl-offload/2016/09/01/dive-into-bpf/
https://github.com/iovisor/

	Can we implement that with eBPF?
	Second case study: token bucket
	Thank you!

