
FOSDEM’17
Brussels, 2017-02-04

Stateful packet processing with eBPF:
An implementation of OpenState interface

Quentin Monnet
<quentin.monnet@6wind.com>

@qeole

mailto:quentin.monnet@6wind.com
https://twitter.com/qeole

Agenda

Me

I’ll speak at FOSDEM

Will talk about:
 ⋅ OpenState,
 40%
 ⋅ eBPF,
 60%

Quentin Monnet (6WIND) | BEBA — OpenState and eBPF 2/34

Agenda

Me

I’ll speak at FOSDEM

Will talk about:
 ⋅ OpenState,
 40%
 ⋅ eBPF,
 60%

Daniel B.

Coming too!

I’ll have a talk
on eBPF!

Quentin Monnet (6WIND) | BEBA — OpenState and eBPF 3/34

Agenda

Me

I’ll speak at FOSDEM

Will talk about:
 ⋅ OpenState,
 40%
 ⋅ eBPF,
 60%

70%

30%

Daniel B.

Coming too!

I’ll have a talk
on eBPF!

Quentin Monnet (6WIND) | BEBA — OpenState and eBPF 4/34

SDN: hosts, VMs, programmable switches, controllers…

Internet

RouterSwitch

Controller

Hypervisor

Quentin Monnet (6WIND) | BEBA — OpenState and eBPF 5/34

Two paths for dataplane

Switch

SDN
controller

Shortcut

Standard path

 Most packets goes through the “shortcut” dataplane
 Some packets are sent as exceptions—this generally includes stateful

processing

Quentin Monnet (6WIND) | BEBA — OpenState and eBPF 6/34

What about: bringing back some control into the switch?

Switch

SDN
controller

OpenState path

Standard path

 Can we make the switch “smarter”, without loosing SDN benefits?
 How could we abstract stateful packet processing, in such a way the

controller can easily set up the switches?

Quentin Monnet (6WIND) | BEBA — OpenState and eBPF 7/34

Horizon 2020

Objectives:

 Wire-speed-reactive control/processing tasks inside the switches
 Centralized control
 Scalability
 Platform-independent

From January 2015 to March 2017 (27 months)
More info at http://www.beba-project.eu/

Quentin Monnet (6WIND) | BEBA — OpenState and eBPF 8/34

http://www.beba-project.eu/

BEBA: Who?

Quentin Monnet (6WIND) | BEBA — OpenState and eBPF 9/34

BEBA switch

BEBA
switch

OpenState
(stateful processing)

InSP
(packet generation)

Open Packet
Processor
(registers and

boolean conditions)

Quentin Monnet (6WIND) | BEBA — OpenState and eBPF 10/34

OpenState: stateful packet processing

Forwarding depends on traffic previously observed

1 Lookup for flow state
2 Lookup for action associated to flow state, perform action
3 Update state to new value

So we need two tables: a state table and a table for actions: XFSM table
(eXtended Finite State Machine)

Packet
pattern State Action

State update

State table XFSM table

Quentin Monnet (6WIND) | BEBA — OpenState and eBPF 11/34

Case study: port knocking

Clients

Switch Server

10.2.2.2

10.3.3.3

10.1.1.1

 Clients see port 22 of the server as closed

 To access port 22, they first have to send a secret packet sequence to
that port

Our example secret sequence: UDP packet on port 1111, 2222, 3333 then 4444

Quentin Monnet (6WIND) | BEBA — OpenState and eBPF 12/34

Case study: port knocking

UDP
packet
on port

1111

UDP
packet

on port 2222

UDP
packet

on port 3333

UDP packet
on port 4444

Any other packet;
or timeout

All TCP packets to
port 22 are forwarded.

Packets to other
ports are dropped.

Initial
state

Step 1 Step 2 Step 3

Connection on
TCP port 22

is open

Quentin Monnet (6WIND) | BEBA — OpenState and eBPF 13/34

State table

 Tracks current state for each flow

Flow matching pattern State

… …

IP src = any DEFAULT

Packet
pattern State

State table

Quentin Monnet (6WIND) | BEBA — OpenState and eBPF 14/34

XFSM table

 To state and “event” pattern, associates action and “next state”

Flow matching pattern Actions

State Event Action Next state

… … … …

DEFAULT UDP dst port = 1111 Drop STEP_1

STEP_1 UDP dst port = 2222 Drop STEP_2

STEP_2 UDP dst port = 3333 Drop STEP_3

STEP_3 UDP dst port = 4444 Drop OPEN

OPEN TCP dst port 22 Forward OPEN

OPEN Port = * Drop OPEN

… … … …

* Port = * Drop DEFAULT

State Action

XFSM table

 “Next state” is used to update the entry for this flow in the state table

Quentin Monnet (6WIND) | BEBA — OpenState and eBPF 15/34

State table update

 The state of the flow is updated for each packet, thus unrolling the
port knocking sequence

Flow matching pattern State

… …

IP src = 10.3.3.3, IP dst = 10.1.1.1 STEP_1

… …

IP src = any DEFAULT

State update

State table XFSM table

Quentin Monnet (6WIND) | BEBA — OpenState and eBPF 16/34

Can we implement that with eBPF?

Quentin Monnet (6WIND) | BEBA — OpenState and eBPF 17/34

eBPF ~ extended Berkeley Packet Filter
 Assembly-like language, based on cBPF (packet filtering)
 Programs come from user space, run in the kernel

tc

LLVM/clang

cls_bpf

Userspace

Kernel

C source code
bpf_prog.c

ELF-compiled BPF
bpf_prog.o

Network stack

tc ingress tc egress

Net device Net device

bpf() syscall

JIT

Packets

User program

Maps

Quentin Monnet (6WIND) | BEBA — OpenState and eBPF 18/34

Stateful eBPF

 Default behavior: program is run to process a packet, no state
preserved on exit

 However: eBPF Maps (kernel 3.18+):
• Memory area accessible from eBPF program through specific kernel
helpers

• Arrays, hash maps (and several other kinds)
• Persistent across multiple runs of an eBPF program
• Can be shared with other eBPF programs
• Can be shared with userspace applications

→ Let’s use hash maps for OpenState tables!

(https://github.com/qmonnet/pkpoc-bpf)

Quentin Monnet (6WIND) | BEBA — OpenState and eBPF 19/34

https://github.com/qmonnet/pkpoc-bpf

openstate.h

/* State table */

struct StateTableKey {
uint16_t ether_type;
uint32_t ip_src;
uint32_t ip_dst;

};

struct StateTableVal {
int32_t state;

};

/* XFSM table */

struct XFSMTableKey {
int32_t state;
uint8_t l4_proto;
uint16_t src_port;
uint16_t dst_port;

};

struct XFSMTableVal {
int32_t action;
int32_t next_state;

};

Quentin Monnet (6WIND) | BEBA — OpenState and eBPF 20/34

portknocking.c: State table lookup

/* [Truncated]
* Parse headers and make sure we have an IP packet, extract src and dst
* addresses; since we will need it at next step, also extract UDP src and dst
* ports.
*/

state_idx.ether_type = ntohs(ethernet->type);
struct StateTableKey state_idx;
state_idx.ip_src = ntohl(ip->src);
state_idx.ip_dst = ntohl(ip->dst);

/* State table lookup */

struct StateTableVal *state_val = map_lookup_elem(&state_table, &state_idx);

if (state_val) {
current_state = state_val->state;
/* If we found a state, go on and search XFSM table for this state and
* for current event.
*/

goto xfsmlookup;
}
goto end_of_program;

Quentin Monnet (6WIND) | BEBA — OpenState and eBPF 21/34

portknocking.c: XFSM table lookup, state table update, action

/* Set up the key */
xfsm_idx.state = current_state;
xfsm_idx.l4_proto = ip->next_protocol;
xfsm_idx.src_port = 0;
xfsm_idx.dst_port = dst_port;

/* Lookup */
struct XFSMTableVal *xfsm_val = map_lookup_elem(&xfsm_table, &xfsm_idx);

if (xfsm_val) {

/* Update state table entry with new state value */
struct StateTableVal new_state = { xfsm_val->next_state };
map_update_elem(&state_table, &state_idx, &new_state, BPF_ANY);

/* Return action code */
switch (xfsm_val->action) {

case ACTION_DROP:
return TC_ACT_SHOT;

case ACTION_FORWARD:
return TC_ACT_OK;

default:
return TC_ACT_UNSPEC;

}
}

Quentin Monnet (6WIND) | BEBA — OpenState and eBPF 22/34

Compile and run

 One would compile the complete program into eBPF with:
$ clang -O2 -emit-llvm -c openstate.c -o - | \

llc -march=bpf -filetype=obj -o openstate.o

 … and attach it with, for example:
tc qdisc add dev eth0 clsact
tc filter add dev eth0 ingress bpf da obj openstate.o

 One more thing: initialize the maps (user-space program with bpf()
syscall)

 Alternative method: bcc’s Python wrappers provide an easier way to
initialize maps, to compile and to inject programs

Quentin Monnet (6WIND) | BEBA — OpenState and eBPF 23/34

Result

Quentin Monnet (6WIND) | BEBA — OpenState and eBPF 24/34

Second case study: token bucket

Quentin Monnet (6WIND) | BEBA — OpenState and eBPF 25/34

Token bucket algorithm

Bucket capacity: 4 tokens
Token generation: 1/Q

W_next

time
Tmin Tmax

T0
Q

W

Packet

Case 1
(normal traffic)

Forward

time
Tmin Tmax

W

W_next

Packet

Case 2
(light traffic)

Forward

time
Tmin Tmax

W

W_next

Packet

Case 3
(heavy load)

Drop

Quentin Monnet (6WIND) | BEBA — OpenState and eBPF 26/34

Model side: Open Packet Processor

 Extension of OpenState:
• With global and per-flow registers

• Registers evaluated with a set of conditions

• XFSM table lookup must also match on conditions

 For token bucket: registers for Tmin and Tmax, then evaluate
conditions:

• cond1 = (t ≥ Tmin); cond2 = (t ≤ Tmax)
• cond1 == true && cond2 == true → Case 1
• cond1 == true && cond2 == false→ Case 2
• cond1 == false → Case 3

(https://github.com/qmonnet/tbpoc-bpf)

Quentin Monnet (6WIND) | BEBA — OpenState and eBPF 27/34

https://github.com/qmonnet/tbpoc-bpf

OPP: architecture

Flow context table

FIK state R0 R1 … Rn

Condition
block

Progr.
Boolean
circuitry

C0

C1

…

Cm

XFSM table

MATCH ACTIONS

C0 C1 … Cm state
packet
field

next
state

packet
actions

update
functions

Global data
variables

G0 G1 … Gp

Update logic
block

Array of ALUs

Lookup
key

extractor

Update key
extractor

pkt

pkt, state, R

G

pkt, state, C
G’

R, G

flow-specific global (shared)

registries D = R ∪ G = { R0, R1, … , Rn, G0, G1, … , Gp }
FIK = Flow Identifier Key

Next
state,

Update
functions

pkt,
FIK

FIK,
state,
R’

pkt,
FIK,
state,

pkt,
actions

Step 1 Step 2

Step 3

Step 4

Quentin Monnet (6WIND) | BEBA — OpenState and eBPF 28/34

eBPF side
 Arrival time of the packet: there is a helper (ktime_get_ns())

 Conditions: can be defined in each program, we need to encode the
result to store it in the tables

uint64_t tnow = ktime_get_ns();

/* State table lookup */
state_val = map_lookup_elem(&state_table, &state_idx);

current_state = state_val->state;
tmin = state_val->r1;
tmax = state_val->r2;

/* Evaluate conditions */
int32_t cond1 = check_condition(GE, tnow, tmin);
int32_t cond2 = check_condition(LE, tnow, tmax);
if (cond1 == ERROR || cond2 == ERROR)
goto error;

/* XFSM table lookup */
xfsm_idx.state = current_state;
xfsm_idx.cond1 = cond1;
xfsm_idx.cond2 = cond2;
xfsm_val = map_lookup_elem(&xfsm_table, &xfsm_idx);

 Tables: just add the registers, we have everything else already

Quentin Monnet (6WIND) | BEBA — OpenState and eBPF 29/34

Result

Quentin Monnet (6WIND) | BEBA — OpenState and eBPF 30/34

Additional use cases for OpenState and OPP

 QoS, load balancer

 DDoS detection and mitigation as middle box application or at
network level

 In-switch ARP handling in datacenter

 Forwarding consistency

 Failure detection and recovery

 …

Quentin Monnet (6WIND) | BEBA — OpenState and eBPF 31/34

Conclusion

 eBPF makes a nice target for BEBA architecture (OpenState, Open
Packet Processor)

 Some limitations:
• no wildcard mechanism for map lookup (yet)
• locks for concurrent access?

 Next step:
• With XDP (hook in the driver instead of tc interface)?
• High-level description language to generate the program

 More implementations, by other project partners:
• Reference implementation: ofsoftswitch
• Acceleration with PFQ (controller: Ryu)
• Acceleration with DPDK, running on a FPGA

Quentin Monnet (6WIND) | BEBA — OpenState and eBPF 32/34

Thank you!

Quentin Monnet (6WIND) | BEBA — OpenState and eBPF 33/34

Resources

BEBA project web page
http://www.beba-project.eu/

BEBA repositories: reference implementations of BEBA switch and controller
https://github.com/beba-eu

OpenState article (SIGCOMM 2014)
http://openstate-sdn.org/pub/openstate-ccr.pdf

Open Packet Processor article (TBP)
https://arxiv.org/abs/1605.01977

Code for the port knocking proof-of-concept in eBPF
https://github.com/qmonnet/pkpoc-bpf

Code for the token bucket proof-of-concept in eBPF
https://github.com/qmonnet/tbpoc-bpf

Resources on BPF — Dive into BPF: a list of reading material
https://qmonnet.github.io/whirl-offload/2016/09/01/dive-into-bpf/

GitHub repository of the IO Visor project (bcc tools, documentation, and more)
https://github.com/iovisor/

Quentin Monnet (6WIND) | BEBA — OpenState and eBPF 34/34

http://www.beba-project.eu/
https://github.com/beba-eu
http://openstate-sdn.org/pub/openstate-ccr.pdf
https://arxiv.org/abs/1605.01977
https://github.com/qmonnet/pkpoc-bpf
https://github.com/qmonnet/tbpoc-bpf
https://qmonnet.github.io/whirl-offload/2016/09/01/dive-into-bpf/
https://github.com/iovisor/

	Can we implement that with eBPF?
	Second case study: token bucket
	Thank you!

