
FOSDEM’17
Brussels, 2017-02-04

Stateful packet processing with eBPF:
An implementation of OpenState interface

Quentin Monnet
<quentin.monnet@6wind.com>

@qeole

mailto:quentin.monnet@6wind.com
https://twitter.com/qeole

Agenda

Me

I’ll speak at FOSDEM

Will talk about:
 ⋅ OpenState,
 40%
 ⋅ eBPF,
 60%

Quentin Monnet (6WIND) | BEBA — OpenState and eBPF 2/34

Agenda

Me

I’ll speak at FOSDEM

Will talk about:
 ⋅ OpenState,
 40%
 ⋅ eBPF,
 60%

Daniel B.

Coming too!

I’ll have a talk
on eBPF!

Quentin Monnet (6WIND) | BEBA — OpenState and eBPF 3/34

Agenda

Me

I’ll speak at FOSDEM

Will talk about:
 ⋅ OpenState,
 40%
 ⋅ eBPF,
 60%

70%

30%

Daniel B.

Coming too!

I’ll have a talk
on eBPF!

Quentin Monnet (6WIND) | BEBA — OpenState and eBPF 4/34

SDN: hosts, VMs, programmable switches, controllers…

Internet

RouterSwitch

Controller

Hypervisor

Quentin Monnet (6WIND) | BEBA — OpenState and eBPF 5/34

Two paths for dataplane

Switch

SDN
controller

Shortcut

Standard path

 Most packets goes through the “shortcut” dataplane
 Some packets are sent as exceptions—this generally includes stateful

processing

Quentin Monnet (6WIND) | BEBA — OpenState and eBPF 6/34

What about: bringing back some control into the switch?

Switch

SDN
controller

OpenState path

Standard path

 Can we make the switch “smarter”, without loosing SDN benefits?
 How could we abstract stateful packet processing, in such a way the

controller can easily set up the switches?

Quentin Monnet (6WIND) | BEBA — OpenState and eBPF 7/34

Horizon 2020

Objectives:

 Wire-speed-reactive control/processing tasks inside the switches
 Centralized control
 Scalability
 Platform-independent

From January 2015 to March 2017 (27 months)
More info at http://www.beba-project.eu/

Quentin Monnet (6WIND) | BEBA — OpenState and eBPF 8/34

http://www.beba-project.eu/

BEBA: Who?

Quentin Monnet (6WIND) | BEBA — OpenState and eBPF 9/34

BEBA switch

BEBA
switch

OpenState
(stateful processing)

InSP
(packet generation)

Open Packet
Processor
(registers and

boolean conditions)

Quentin Monnet (6WIND) | BEBA — OpenState and eBPF 10/34

OpenState: stateful packet processing

Forwarding depends on traffic previously observed

1 Lookup for flow state
2 Lookup for action associated to flow state, perform action
3 Update state to new value

So we need two tables: a state table and a table for actions: XFSM table
(eXtended Finite State Machine)

Packet
pattern State Action

State update

State table XFSM table

Quentin Monnet (6WIND) | BEBA — OpenState and eBPF 11/34

Case study: port knocking

Clients

Switch Server

10.2.2.2

10.3.3.3

10.1.1.1

 Clients see port 22 of the server as closed

 To access port 22, they first have to send a secret packet sequence to
that port

Our example secret sequence: UDP packet on port 1111, 2222, 3333 then 4444

Quentin Monnet (6WIND) | BEBA — OpenState and eBPF 12/34

Case study: port knocking

UDP
packet
on port

1111

UDP
packet

on port 2222

UDP
packet

on port 3333

UDP packet
on port 4444

Any other packet;
or timeout

All TCP packets to
port 22 are forwarded.

Packets to other
ports are dropped.

Initial
state

Step 1 Step 2 Step 3

Connection on
TCP port 22

is open

Quentin Monnet (6WIND) | BEBA — OpenState and eBPF 13/34

State table

 Tracks current state for each flow

Flow matching pattern State

… …

IP src = any DEFAULT

Packet
pattern State

State table

Quentin Monnet (6WIND) | BEBA — OpenState and eBPF 14/34

XFSM table

 To state and “event” pattern, associates action and “next state”

Flow matching pattern Actions

State Event Action Next state

… … … …

DEFAULT UDP dst port = 1111 Drop STEP_1

STEP_1 UDP dst port = 2222 Drop STEP_2

STEP_2 UDP dst port = 3333 Drop STEP_3

STEP_3 UDP dst port = 4444 Drop OPEN

OPEN TCP dst port 22 Forward OPEN

OPEN Port = * Drop OPEN

… … … …

* Port = * Drop DEFAULT

State Action

XFSM table

 “Next state” is used to update the entry for this flow in the state table

Quentin Monnet (6WIND) | BEBA — OpenState and eBPF 15/34

State table update

 The state of the flow is updated for each packet, thus unrolling the
port knocking sequence

Flow matching pattern State

… …

IP src = 10.3.3.3, IP dst = 10.1.1.1 STEP_1

… …

IP src = any DEFAULT

State update

State table XFSM table

Quentin Monnet (6WIND) | BEBA — OpenState and eBPF 16/34

Can we implement that with eBPF?

Quentin Monnet (6WIND) | BEBA — OpenState and eBPF 17/34

eBPF ~ extended Berkeley Packet Filter
 Assembly-like language, based on cBPF (packet filtering)
 Programs come from user space, run in the kernel

tc

LLVM/clang

cls_bpf

Userspace

Kernel

C source code
bpf_prog.c

ELF-compiled BPF
bpf_prog.o

Network stack

tc ingress tc egress

Net device Net device

bpf() syscall

JIT

Packets

User program

Maps

Quentin Monnet (6WIND) | BEBA — OpenState and eBPF 18/34

Stateful eBPF

 Default behavior: program is run to process a packet, no state
preserved on exit

 However: eBPF Maps (kernel 3.18+):
• Memory area accessible from eBPF program through specific kernel
helpers

• Arrays, hash maps (and several other kinds)
• Persistent across multiple runs of an eBPF program
• Can be shared with other eBPF programs
• Can be shared with userspace applications

→ Let’s use hash maps for OpenState tables!

(https://github.com/qmonnet/pkpoc-bpf)

Quentin Monnet (6WIND) | BEBA — OpenState and eBPF 19/34

https://github.com/qmonnet/pkpoc-bpf

openstate.h

/* State table */

struct StateTableKey {
uint16_t ether_type;
uint32_t ip_src;
uint32_t ip_dst;

};

struct StateTableVal {
int32_t state;

};

/* XFSM table */

struct XFSMTableKey {
int32_t state;
uint8_t l4_proto;
uint16_t src_port;
uint16_t dst_port;

};

struct XFSMTableVal {
int32_t action;
int32_t next_state;

};

Quentin Monnet (6WIND) | BEBA — OpenState and eBPF 20/34

portknocking.c: State table lookup

/* [Truncated]
* Parse headers and make sure we have an IP packet, extract src and dst
* addresses; since we will need it at next step, also extract UDP src and dst
* ports.
*/

state_idx.ether_type = ntohs(ethernet->type);
struct StateTableKey state_idx;
state_idx.ip_src = ntohl(ip->src);
state_idx.ip_dst = ntohl(ip->dst);

/* State table lookup */

struct StateTableVal *state_val = map_lookup_elem(&state_table, &state_idx);

if (state_val) {
current_state = state_val->state;
/* If we found a state, go on and search XFSM table for this state and
* for current event.
*/

goto xfsmlookup;
}
goto end_of_program;

Quentin Monnet (6WIND) | BEBA — OpenState and eBPF 21/34

portknocking.c: XFSM table lookup, state table update, action

/* Set up the key */
xfsm_idx.state = current_state;
xfsm_idx.l4_proto = ip->next_protocol;
xfsm_idx.src_port = 0;
xfsm_idx.dst_port = dst_port;

/* Lookup */
struct XFSMTableVal *xfsm_val = map_lookup_elem(&xfsm_table, &xfsm_idx);

if (xfsm_val) {

/* Update state table entry with new state value */
struct StateTableVal new_state = { xfsm_val->next_state };
map_update_elem(&state_table, &state_idx, &new_state, BPF_ANY);

/* Return action code */
switch (xfsm_val->action) {

case ACTION_DROP:
return TC_ACT_SHOT;

case ACTION_FORWARD:
return TC_ACT_OK;

default:
return TC_ACT_UNSPEC;

}
}

Quentin Monnet (6WIND) | BEBA — OpenState and eBPF 22/34

Compile and run

 One would compile the complete program into eBPF with:
$ clang -O2 -emit-llvm -c openstate.c -o - | \

llc -march=bpf -filetype=obj -o openstate.o

 … and attach it with, for example:
tc qdisc add dev eth0 clsact
tc filter add dev eth0 ingress bpf da obj openstate.o

 One more thing: initialize the maps (user-space program with bpf()
syscall)

 Alternative method: bcc’s Python wrappers provide an easier way to
initialize maps, to compile and to inject programs

Quentin Monnet (6WIND) | BEBA — OpenState and eBPF 23/34

Result

Quentin Monnet (6WIND) | BEBA — OpenState and eBPF 24/34

Second case study: token bucket

Quentin Monnet (6WIND) | BEBA — OpenState and eBPF 25/34

Token bucket algorithm

Bucket capacity: 4 tokens
Token generation: 1/Q

W_next

time
Tmin Tmax

T0
Q

W

Packet

Case 1
(normal traffic)

Forward

time
Tmin Tmax

W

W_next

Packet

Case 2
(light traffic)

Forward

time
Tmin Tmax

W

W_next

Packet

Case 3
(heavy load)

Drop

Quentin Monnet (6WIND) | BEBA — OpenState and eBPF 26/34

Model side: Open Packet Processor

 Extension of OpenState:
• With global and per-flow registers

• Registers evaluated with a set of conditions

• XFSM table lookup must also match on conditions

 For token bucket: registers for Tmin and Tmax, then evaluate
conditions:

• cond1 = (t ≥ Tmin); cond2 = (t ≤ Tmax)
• cond1 == true && cond2 == true → Case 1
• cond1 == true && cond2 == false→ Case 2
• cond1 == false → Case 3

(https://github.com/qmonnet/tbpoc-bpf)

Quentin Monnet (6WIND) | BEBA — OpenState and eBPF 27/34

https://github.com/qmonnet/tbpoc-bpf

OPP: architecture

Flow context table

FIK state R0 R1 … Rn

Condition
block

Progr.
Boolean
circuitry

C0

C1

…

Cm

XFSM table

MATCH ACTIONS

C0 C1 … Cm state
packet
field

next
state

packet
actions

update
functions

Global data
variables

G0 G1 … Gp

Update logic
block

Array of ALUs

Lookup
key

extractor

Update key
extractor

pkt

pkt, state, R

G

pkt, state, C
G’

R, G

flow-specific global (shared)

registries D = R ∪ G = { R0, R1, … , Rn, G0, G1, … , Gp }
FIK = Flow Identifier Key

Next
state,

Update
functions

pkt,
FIK

FIK,
state,
R’

pkt,
FIK,
state,

pkt,
actions

Step 1 Step 2

Step 3

Step 4

Quentin Monnet (6WIND) | BEBA — OpenState and eBPF 28/34

eBPF side
 Arrival time of the packet: there is a helper (ktime_get_ns())

 Conditions: can be defined in each program, we need to encode the
result to store it in the tables

uint64_t tnow = ktime_get_ns();

/* State table lookup */
state_val = map_lookup_elem(&state_table, &state_idx);

current_state = state_val->state;
tmin = state_val->r1;
tmax = state_val->r2;

/* Evaluate conditions */
int32_t cond1 = check_condition(GE, tnow, tmin);
int32_t cond2 = check_condition(LE, tnow, tmax);
if (cond1 == ERROR || cond2 == ERROR)
goto error;

/* XFSM table lookup */
xfsm_idx.state = current_state;
xfsm_idx.cond1 = cond1;
xfsm_idx.cond2 = cond2;
xfsm_val = map_lookup_elem(&xfsm_table, &xfsm_idx);

 Tables: just add the registers, we have everything else already

Quentin Monnet (6WIND) | BEBA — OpenState and eBPF 29/34

Result

Quentin Monnet (6WIND) | BEBA — OpenState and eBPF 30/34

Additional use cases for OpenState and OPP

 QoS, load balancer

 DDoS detection and mitigation as middle box application or at
network level

 In-switch ARP handling in datacenter

 Forwarding consistency

 Failure detection and recovery

 …

Quentin Monnet (6WIND) | BEBA — OpenState and eBPF 31/34

Conclusion

 eBPF makes a nice target for BEBA architecture (OpenState, Open
Packet Processor)

 Some limitations:
• no wildcard mechanism for map lookup (yet)
• locks for concurrent access?

 Next step:
• With XDP (hook in the driver instead of tc interface)?
• High-level description language to generate the program

 More implementations, by other project partners:
• Reference implementation: ofsoftswitch
• Acceleration with PFQ (controller: Ryu)
• Acceleration with DPDK, running on a FPGA

Quentin Monnet (6WIND) | BEBA — OpenState and eBPF 32/34

Thank you!

Quentin Monnet (6WIND) | BEBA — OpenState and eBPF 33/34

Resources

BEBA project web page
http://www.beba-project.eu/

BEBA repositories: reference implementations of BEBA switch and controller
https://github.com/beba-eu

OpenState article (SIGCOMM 2014)
http://openstate-sdn.org/pub/openstate-ccr.pdf

Open Packet Processor article (TBP)
https://arxiv.org/abs/1605.01977

Code for the port knocking proof-of-concept in eBPF
https://github.com/qmonnet/pkpoc-bpf

Code for the token bucket proof-of-concept in eBPF
https://github.com/qmonnet/tbpoc-bpf

Resources on BPF — Dive into BPF: a list of reading material
https://qmonnet.github.io/whirl-offload/2016/09/01/dive-into-bpf/

GitHub repository of the IO Visor project (bcc tools, documentation, and more)
https://github.com/iovisor/

Quentin Monnet (6WIND) | BEBA — OpenState and eBPF 34/34

http://www.beba-project.eu/
https://github.com/beba-eu
http://openstate-sdn.org/pub/openstate-ccr.pdf
https://arxiv.org/abs/1605.01977
https://github.com/qmonnet/pkpoc-bpf
https://github.com/qmonnet/tbpoc-bpf
https://qmonnet.github.io/whirl-offload/2016/09/01/dive-into-bpf/
https://github.com/iovisor/

	Can we implement that with eBPF?
	Second case study: token bucket
	Thank you!

