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Abstract—Over the last decade, the level of critical 

infrastructure technology has been steadily transforming in 

order to keep pace with the growing demand for the services 

offered. The implementation of the smart grid, which relies on a 

complex and intelligent level of interconnectivity, is one example 

of how vital amenity provision is being refined. However, with 

this change, the risk of threats from the digital domain must be 

calculated. Superior interconnectivity between infrastructures 

means that the future cascading impacts of successful cyber-

attacks are unknown. One such threat being faced in the digital 

domain is the Distributed Denial of Service (DDoS) attack. A 

DDoS has the goal of incapacitating a server, network or service, 

by barraging a target with external data traffic in the form of 

communication requests. DDoS have the potential to cause a 

critical infrastructure outage, and the subsequent impact on a 

network of such infrastructures is yet unknown. In this paper, an 

approach for assessing the future impacts of a cyber-attack in a 

network of critical infrastructures is presented; with a focus on 

DDoS attacks. A simulation of a critical infrastructure network 

provides data to represent both normal run-time and an attack 

scenario. Using this dataset, a technique for assessing the future 

impact of disruptions on integrated critical infrastructure 

network, is demonstrated.  

Index Terms—Critical Infrastructure, Cyber-Attack Distributed 

Denial of Service, Simulation, Cascading Failure 

1.  INTRODUCTION 

Critical infrastructures present tempting targets for cyber-

attackers. Society has a high reliance on the services provided 

and any disruption would have severe impacts on the 

economy, social well-being, and potentially even leads to loss 

of life [1]. Their service provision is becoming increasingly 

reliant on ICT networks, meaning they are more vulnerable 

than ever before to attacks emerging from cyber-space. 

Particularly, with the continued integration of wireless 

components and Internet enabled control system software, the 

last decade has seen a significant increase in the number of 

access points within infrastructure networks. 

Traditionally, critical networks were closed to the outside 

world. However, the need for remote access within critical 

infrastructure networks has become increasingly crucial. This 

is predominantly due to their continuing growth, vast 

geographic distribution and increasing dependence on 

automation. In consequence, key service providers are 

increasingly reliant on the interconnectivity and remote access 

to centrally manage the component systems. 

Presently, there is a growing level of interdependence 

between different critical infrastructures. For example, 

through the introduction of the smart grid, power plants, a 

once isolated infrastructure, have become intertwined with 

others to provide a more intelligent distribution service. There 

is also a physical dependence; critical infrastructures rely on 

each other to continue the provision of their own services. For 

example, civilians need to be able to access the emergency 

services at any time; however, the emergency services heavily 

rely on the availability of the telecommunications network; 

which in turn relies upon the provision of stable power supply.  

Distributed Denial of Service (DDoS) attacks, in particular, 

pose a significant threat to critical infrastructures, companies 

and e-government services around the globe. A successful 

DDoS attack on an infrastructure has the potential, to not only 

impact the target, but cause a cascading effect. Often service 

provision crosses borders, meaning any impact would cause 

wide-spread devastation, affecting multiple countries. 

The key challenge lies in the ability to block DDoS attacks, 

which are hard to identify. The nature of the attack means that 

a huge volume of traffic data originates from millions of 

different devices. As the devices are usually owned by law-

abiding civilians, who are unaware of the event taking place, 

blocking the source of the traffic is a challenge. The attacks 

are caused by a hijacked network of computers, known as a 

botnet, controlled by a botmaster. They have the potential to 

be used for serious cyber-criminal activity; as this form of 

attack can be so powerful, the computing power of the target 

is exhausted [2]. As a result, the service provision is disrupted.  

The reasons for a cyber-attack taking place vary. 

Frequently, the motivation is political, whereby key targets are 

taken down by activists or groups with a political message. 

Websites offer ideal targets for DDoS attacks, as they operate 

as the frontend and provide the customer interface, so the 

impact of an attack is noticeable. The effect is that users are 

unable to access the service due to the volume of traffic 

blocking access to the servers hosting the website. One 

example of this was the disruption to Wikileaks, caused by 

traffic at the level of 10 Gigabits per second [3]. Other high-



profile cases, such as the widely publicised attacks on Visa, 

MasterCard and the PlayStation network, show the real-threat 

being faced [4].  

In this paper, the potential effects of a disruption to a 

critical infrastructure network caused by a DDoS are 

presented. In a future, which contains inherent cyber-threat 

insecurities, the need to plan for attacks and improve the level 

of resilience is greatly needed. The remainder of this paper is 

structured as follows. Section 2 provides a background 

discussion on DDoS attacks. Section 3 presents a simulation 

of a network of critical infrastructures used for data 

construction. Section 4 provides an account of how the 

proposed framework uses data classification techniques to 

analyse subtle changes in critical infrastructure behaviours. 

Section 5 presents a discussion on the results and highlights, 

how the techniques can be used to plan for assessing the 

future impact of cascading failure. Finally, the paper is 

concluded in Section 6. 

2. BACKGROUND 

With the volumes of complex attacks starting to increase, 

there is a real present threat to critical infrastructures. In this 

subsection, the DDoS attack type is presented as a 

demonstration of the variety of attacks facing future critical 

infrastructure technologies. 

2.1 DDoS 

A DDoS attack involves overloading routers and intermediate 

links by sending them enormous volumes of network traffic 

[4]. It effectively functions as a cyber-army, which can span 

across the globe, without the user having to invest in their own 

hardware or own any physical components [5]. The popularity 

of the attack is due to the operator having an objectively high 

level of anonymity. There are numerous different types of 

DDoS, some of which include: SYN flood, peer-to-peer and 

permanent denial of service. Each of which is explained as 

follows: 

 SYN Flood: Known as a Transmission Control Protocol 

Synchronised Flood (SYN Flood), the attack scenario 

involves exploiting the TCP connection establishment 

process [6]. Specifically, to establish a connection, a 

device sends and receives a SYN. The DDoS attack, in 

this case, functions by making the server unavailable and 

the SYN process is blocked. 

 Peer-to-peer: This type of attack normally involves 

forcing clients of significant peer-to-peer file sharing 

centres, to connect to a victim after disconnecting from 

their own network. These attacks operate differently to a 

botnet and the bot computers are often controlled 

individually. 

 Permanent denial of service: Often DDoS attacks can be 

so severe that the target hardware needs replacement as a 

result. This is known as a permanent denial of service 

(PDoS), where backdoors are exploited and used to target 

device firmware which is replaced by the attackers’ own 

firmware. 

The commonality in all types of DDoS attacks is that they are 

problematic to block, as distinguishing between good and bad 

requests to a server is a challenge. Finding a way to improve 

cyber-defences is of huge importance to safeguard the 

increasing use of wireless sensor networks (WSN) and 

dependence on interconnectivity in critical infrastructure 

networks. Consequently, in the following section, the 

vulnerabilities of WSNs are detailed. 

2.2 DDoS and WSNs 

Some specific architectures are particularly vulnerable to 

denial of service attacks. WSNs are one of those. Sensors are 

small devices spread over a monitored area, and they are 

expected to collect physical data upon their environment. 

Because they may be used in remote places or in hostile 

environments (hard to access areas, or battlefields for 

instance), they embed cheap hardware and are subject to 

strong limitations: they have low computation abilities, little 

available memory, and their battery is generally non-refillable. 

For these reasons, and because sensors communicate only 

through wireless protocols, WSNs are especially vulnerable to 

denial of service attacks [7].  

DoS in WSNs embraces many different attacks, which can 

target all layers of the network [8]. Jamming the radio 

frequencies and disturbing the routing protocols are just two 

examples of ways to harm the network. Even jamming can 

actually be performed in a variety of ways [9]. In reaction to 

these, a number of solutions have been proposed [10]. Many 

solutions rely on trust models [11], [12]. Agents then apply a 

set of traffic rules [13] to assign a trust value to each of the 

nodes in the network. In that way, a simple detection system is 

constructed, which consists of a set of nodes called ‘guarding 

nodes’ that analyse traffic in a clustered network [14]. When 

detecting abnormal traffic from a given node, guarding nodes 

identify it as a compromised node and inform the cluster head 

(CH) of this fact. Upon receipt of reports from several distinct 

monitoring nodes (to prevent false denunciation from a 

compromised node), the CH virtually excludes the suspicious 

node from the cluster. The authors show the benefit of their 

method by presenting numerical analysis of detection rate. 

Although the method is efficient for detecting rogue nodes, 

the authors do not give details of the election mechanism for 

choosing the guardian nodes. Also, there is no mention in their 

study of renewing the election in time, which causes the 

appointed monitoring nodes to endorse heavier energy 

consumption over a long period.  

The most effective method of detecting a DoS attack in a 

WSN is simply to run a detection mechanism on each single 

sensor. Of course, this solution is not feasible in a network 

with constraints. Instead of equipping each sensor with such a 

mechanism, it is proposed in [15] to resort to heuristics in 

order to place several nodes equipped with detection systems 

at critical spots in the network topology. This optimised 

placement strategy enables distributed detection of DoS 



attacks and reduces costs and processing overheads, since the 

number of required detectors is minimised. But those few 

selected nodes are likely to run out of battery power much 

faster than normal nodes. Some works examine the possibility 

of detecting the compromising of nodes as soon as an 

opponent physically withdraws them from the network. In the 

method that is developed in [16], each node keeps a watch on 

the presence of its neighbours. The Sequential Probability 

Radio Test (SPRT) is used to determine a dynamic time 

threshold. When a node appears to be missing for a period 

longer than this threshold, it is considered to be dead or 

captured by an attacker. If this node is later redeployed in the 

network, it will immediately be considered as compromised 

without having a chance to be harmful. Nothing is done, 

however, if an attacker manages to compromise the node 

without extracting the sensor from its environment. In [17], a 

revised version of the OLSR protocol is proposed. This 

routing protocol called DLSR aims at detecting distributed 

denial of service (DDoS) attacks and at dropping malicious 

requests before they can saturate a server’s capacity to answer. 

To that end, the authors introduce two alert thresholds 

regarding this server’s service capacity.  

The authors also use Learning Automata (LAs), automatic 

systems, whose choice of next action depends on the result of 

its previous action. There is no indication in their work about 

the overhead or the energy load resulting from the use of the 

DLSR protocol. A novel broadcast authentication mechanism 

can also be deployed so as to cope with DoS attacks in sensor 

networks such as in [18]. This scheme uses an asymmetric 

distribution of keys between sensor nodes and the sink, and 

uses a Bloom filter as an authenticator, which efficiently 

compresses multiple authentication information. In this model, 

the sink, shares symmetric keys with each sensor node, and 

proves its knowledge of the information through multiple 

MAC values in its flooding messages. When the sink floods 

the network with control messages, it constructs a Bloom filter 

as an authenticator for the message. When a sensor node 

receives a flooded control message, it generates their Bloom 

filter with its keys and in the same way sink verifies message 

authentication. 

2.3 Related Research 

There are many concerns surrounding the resilience of 

future critical infrastructure networks, particularly when faced 

with DDoS attacks. One emerging type of critical 

infrastructure network is that of smart utility grids, with their 

increasing levels of complexity, interconnectivity and 

interdependence. Unfortunately, as with most new 

technologies, smart grid security is still in a juvenile stage [19] 

and there is currently a lack of defined standards. Hence, the 

effects that a DDoS attack will have on such dynamic and 

complex networks is extremely difficult to predict and 

therefore largely unknown. 

Smart grids are highly complex networks comprised of 

millions of computing agents; the majority of which will be 

internet-facing. Unfortunately, this means that large parts of 

the grid will be exposed to DDoS attacks, which can 

ultimately lead to cascading failures throughout the 

infrastructure. In a smart electric grid, the predominant idea is 

to balance power distribution. For this, the Advanced 

Metering Infrastructure (AMI) is used, but its openness 

exposes many potential weak points within the network [20] 

that can be targeted by DDoS attacks to maximise impact and 

disruption throughout the grid. For example, targeting smart 

meter aggregators/gateways can prevent current energy 

consumption from being reliably measured. This in turn can 

affect the power availability of local and regional substations 

and ultimately the demand on the power stations.  The 

potential repercussions of such attacks are highly significant, 

ranging from the interrupting the availability of individual 

components, to mass power outages or damage to 

infrastructures. 

The security and resilience of future critical infrastructures 

is of vital significance to their success and functionality. The 

ease at which DDoS attacks can be launched and their high 

level of efficiency is concerning for safety of future critical 

infrastructures. This is particularly prevalent as the EU 

Commission aims to have at least 80% of Europe using smart 

electric meters by 2020 [21]. 

3. CRITICAL INFRASTRUCTURE SIMULATION 

To counter the growing threat of DDoS attacks and predict the 

future impacts of other cyber-attack types, simulation presents 

an ideal tool to experiment with new and innovative security 

measures. In this paper, a simulation of a city, which is used 

to construct data and trace the effects of a DDoS attack in a 

network of critical infrastructures, is presented. The 

simulation consists of seven infrastructures, all interconnected 

by a network of cables and pipes, used for electricity, 

communication and water distribution. The infrastructures 

encompassed include: a power plant, an industrial 

infrastructure, a telecommunications infrastructure, a water 

distribution plant, residential housing and businesses. The 

software is based on object-oriented modelling, where each 

component is an individual object, which can be adjusted. 

When linked together, the system functions, as shown in 

Figure 1.  

A. Simulation 

During simulation run-time, the behaviour of one of the 

infrastructures has a direct impact on another. When a 

component failure occurs, the city is able to keep functioning, 

but the effects of the fault should be visible in the dataset. In 

addition, the effects of a cyber-attack are able to propagate as 

a result of interdependencies. For example, disruption of 

service provision from the power plant would directly affect 

telecommunications and water production, which rely on 

power to function. In the simulation, the individual blue 

blocks represent a visualisation of water flow. The yellow 

blocks represent units of energy generated by the power plant. 

The green blocks represent a network communication between 

infrastructures.  



The system functions consistently during runtime. However, 

the output and behaviour differs slightly each time the 

simulation process takes place, resulting in variance in the 

datasets constructed. 

 

Figure 1 Critical Infrastructure Simulation Overview 

The simulation presented is set in a format which is 

rudimentary to follow, for graphical purposes, and is used to 

construct granular data. Specifically, individual behavioural 

datasets for each of the critical infrastructures operating in the 

networked grid can be constructed. 

B. Experiment Overview 

As previously mentioned, the effects of a DDoS attack on 

one infrastructure may have the potential to cascade 

throughout the network of infrastructures. The aim of this 

research is, therefore, to propose a technique for identifying 

the cascading effects of a DDoS attack in particular. The 

ambition of the research is to develop a technique which can 

assist with the future planning and development of more 

resilient critical infrastructure interconnectivities. Often the 

impact of a minor disruption in one infrastructure on another 

may appear trivial and hard to identify; however, frequently 

the results can have a significant impact on service provision. 

The data constructed from the simulation is used to present 

the effects of a DDoS attack, and propose a system for tracing 

its effects as its impact moves through the network. This 

research is noteworthy, particularly as countries, such as the 

UK, are migrating towards the use of the smart grid. The 

smart grid relies on an interconnectivity of services to offer a 

more intelligent utility distribution network. It is essential to 

plan for disruptions to technologies such as this, and predict 

how cyber-attacks will have a different impact in the future. 

As more digital and automation services are introduced, in 

order to match the growing demand for services offered by 

critical infrastructures, predicting the impact of a cyber-attack 

is vital. 

In the simulation, an attack is introduced to the grid in a 

process which involves overloading the telecommunication 

plant with data requests. This acts as a simulation of a DDoS 

attack; disrupting how the infrastructures to communicate 

between each other. The attack threat is implemented through 

a direct connection to the telecommunications plant from an 

outside source. At this point, data is extracted from the 

simulation when functioning both normally and when under a 

cyber-attack. By completing this process, the dataset can be 

used to propose an approach for predicting the impact of 

attacks, which have the ability to cause a cascading effect. In 

the following section, the methodology and system framework 

is presented. 

4. METHODOLOGY 

As critical infrastructure datasets are significantly large, the 

proposed system operates through a serious of modules, which 

are based in a cloud environment for scalability purposes. The 

aim of the framework is to put forward a technique for the 

prediction of cascading effects in an interconnected network 

of critical infrastructures. 

A. Framework 

This process includes various stages, such as: data 

collection, cleaning and normalisation of raw data, feature 

extraction, data classification and visualisation. Cleaning 

involves verifying that there are no missing values and 

smoothing out data which inconsistent. Noisy data, which 

refers to corrupt and meaningless values, are also removed. 

The features selected are unique for each critical infrastructure 

but they could include: overall water volumes, energy creation, 

water levels or speed of water flow. They are constructed by 

cataloguing the data into designated representations of the 

dataset. Classification is achieved using the features to train 

classifiers to detect subtle changes in system behaviours. This 

process is known as supervised learning. The classification 

results are then visualised in a graphical format and 

communicated to the user through a GUI. The system has its 

own user interface, which allows the operator to interact with 

the system. The framework is displayed in Figure 2 below. 

Data Collection

Network/Data Source

Data Cleaning Feature Extraction

Data 

Classification
Visualisation GUI

 

Figure 2 High Level Framework 



B. Data Classification 

The data classification is essential in order to identify 

variations in patterns of activity, which are often subtle and a 

challenge to identify. The evaluation process discussed in this 

paper uses supervised learning; this involves giving the 

classification algorithms the ‘correct answer’ to allow them to 

operate self-sufficiently. By using this method, classifiers are 

trained using features extracted from the dataset, to identify 

when anomalous behaviour has occurred in one critical 

infrastructure, as a result of a failure in another. 

The approach involves specific data classification 

techniques, including: Uncorrelated Normal Density based 

Classifier (UDC), Quadratic Discriminant Classifier (QDC), 

Linear Discriminant Classifier (LDC), Polynomial Classifier 

(POLYC), k-Nearest Neighbour (KNNC), Decision Tree  

(TREEC), Parzen Classifier (PARZENC), Support Vector 

Classifier (SVC) and Naïve Bayes Classifier (NAIVEBC). 

Each of these classifiers was chosen as they have the ability to 

learn how to recognise abnormal values in a dataset. They also 

employ a supervised learning approach, which is a key part of 

the approach. In the following section, the classification 

evaluation techniques are presented. Each of the techniques 

provides an assessment of the classifiers’ success or failure 

when classifying the data 

5. EVALUATION 

The dataset constructed from the simulation included a 

collection of 29 features and 12 records of data; 6 normal and 

6 abnormal behaviour, for an initial case study. A sample of 

the data is presented in Table 1. The normal behaviour refers 

to when the critical infrastructures are functioning correctly 

and with no interferences. 

Table 1. Data Sample 

Label Feature1 Feature2 Feature3 Feature4 

Normal 13.556 13.556 3.6560 3.6560 

Normal 19.427 19.427 5.4280 5.4280 

Normal 24.488 24.488 7.0840 7.0840 

Normal 30.475 30.475 8.7390 8.7390 

Normal 37.265 37.265 8.3950 10.000 

Normal 6.5170 6.5170 2.0000 2.0000 

Attack 13.556 13.556 9.7120 19.136 

Attack 19.427 19.427 17.195 20.907 

Attack 24.488 24.488 22.563 22.563 

Attack 30.475 30.475 24.219 24.219 

Attack 37.265 37.265 10.000 23.875 

Attack 6.5170 6.5170 5.2000 17.136 

Abnormal behaviour refers to the city functioning in a 

cyber-attack scenario state. The dataset used for the 

classification process was constructed through running the 

simulation for a 24 hour period as normal and a 24 hour 

period under a DDoS attack on the telecommunications 

network. The dataset refers only to the effects of 

communication behavioural changes. As the dataset shows, in 

Table 1, some of the attack and normal behaviour values are 

the same for certain features. However, the changes in 

behaviour can be seen in others. 

A. Approach 

The results of the classification process are calculated using 

a confusion matrix which determines the distribution of errors 

across all classes. The estimate of the classifier is calculated 

as the trace of the matrix divided by the total number of 

entries. Additionally, a Confusion Matrix provides the point 

where miss-classification occurs. In other words, it shows true 

positive (TP), false positive (FP), true negative (TN) and false 

negative (FN) values. Diagonal elements show the 

performance of the classifier, while off diagonal presents 

errors. 

TP FN 

FP TN 

Using the confusion matrix, the success rate of each 

classifier can be evaluated by dividing the number of True 

Positive and True Negative results by the total number of 

feature vectors, as displayed in the following formula: 

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 

In addition to providing the success rate, the confusion 

matrix also provides the calculation of the sensitivity and 

specificity for each classification. Sensitivity is identification 

of positive results in a data set. This refers to accurately 

detected normal system behaviour and it is calculated using 

the formula: 
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Whereas, Specificity is the identification of negative results 

and is calculated using the following formula. Again, in this 

paper, this refers to accurately detected normal and anomalous 

system behaviour. 
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

Using the confusion matrix, specificity and sensitivity 

results, it is possible to evaluate ability of each of the data 

classifiers abilities to detect anomalous behaviour. 

B. Results 

The results are displayed in Table 2. The classification 

process had mixed results, with an average classification 

success rate of 62.96%. SVC and PolyC were the most 

successful and able to classify 100% of the behaviour 

accurately. The results demonstrate how behavioural patterns 

can be analysed. A change in one infrastructure impacts 

another, and the impact can be identified using the SVC and 

PolyC classifiers. 

 



Table 2. Classification Results 

 
AUC Error Sensitivity Specificity 

LDC 83.33 0.17 1.00 0.67 

UDC 50.00 0.50 1.00 0.00 

QDC 33.33 0.67 0.00 0.67 

SVC 100.00 0.00 1.00 1.00 

ParzenC 33.33 0.67 0.33 0.33 

TreeC 66.67 0.33 1.00 0.33 

KNNC 33.33 0.67 0.67 0.00 

NaivebC 66.67 0.33 1.00 0.33 

PolyC 100.00 0.00 1.00 1.00 

C. Discussion 

Critical infrastructures, which are seemingly separate, 

heavily rely on each other for an effective service provision. 

The technique presented, demonstrates how it is possible to 

assess the impact of a cyber-attack, in this case a DDoS attack 

in a network of infrastructures. Applying the above technique 

to individual critical infrastructure datasets demonstrates how 

the changes in behaviour of one infrastructure can be 

identified in the operation of another. This can be either 

through a direct or indirect connection. The results show that 

the classifiers are able to identify behavioural changes, with a 

mean average of 62.96%. The sensitivity results (normal 

behaviours), were relatively successful, with 6 of the 9 

classifiers able to identify 100% of the normal behaviour. The 

specificity results, however (attack behaviour changes) were 

less-successful; with only 2, (SVC and PolyC) able to identify 

100% of abnormal behaviour occurrences. For that reason, 

future work will focus on both classifiers for prediction. 

6. CONCLUSION AND FUTURE WORK 

The aim of this research is to highlight an innovative approach 

for institutions to calculate the impact of cascading failures, 

and subsequently plan for resilience. The most ideal approach 

for countering the growing cyber-threat problem is to plan for 

the effects of a failure taking place in an interconnected 

network. It is essential to increase the level of resilience by 

ensuring that recovery plans are put in place in order to be 

prepared for when a cascading failure occurs. To expand on 

this work in the future, an enlarged dataset including more 

records will be used. A case study into the individual 

behaviour of one infrastructure, when a fault occurs in another, 

will also be investigated. The simulation of a critical 

infrastructure will be expanded, in order to incorporate a 

greater network or infrastructures and interconnectivities. 

Finally, the future work will also extend the experimentation 

to include data from a real smart grid network, and the 

processing of this data in a cloud environment. 
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