
SECURITY AND COMMUNICATION NETWORKS
Security Comm. Networks 2013; 6:420–436

Published online 14 February 2013 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/sec.630
SPECIAL ISSUE PAPER

Modeling tools for detecting DoS attacks in WSNs
Paolo Ballarini1, Lynda Mokdad2* and Quentin Monnet2

1 Laboratoire MAS, École Centrale de Paris, Chatenay-Malabry, France
2 Laboratoire LACL, Université Paris-Est, Créteil, France
ABSTRACT

Detecting denial-of-service (DoS) attacks and reducing the energy consumption are two important and frequent
requirements in wireless sensor networks (WSNs). In this paper, we propose an energy-preserving solution to detect
compromised nodes in hierarchically clustered WSNs. DoS detection is based on using dedicated inspector nodes
(cNodes) whose role is to analyze the traffic inside a cluster and to send warnings to the cluster head whenever
an abnormal behavior (i.e., high packets throughput) is detected. With previously introduced DoS detection schema,
cNodes are statically displaced in strategic positions within the network topology. This guarantees good detection
coverage but leads to quickly draining cNodes battery. In this paper, we propose a dynamic cNodes displacement
schema according to which cNodes are periodically elected among ordinary nodes of each atomic cluster. Such a
solution results in a better energy balance while maintaining good detection coverage. We analyze the tradeoffs
between static and dynamic solutions by means of two complementary approaches: through simulation with the
NS-2 simulation platform and by means of statistical model checking with the Hybrid Automata Stochastic Logic.
Copyright © 2013 John Wiley & Sons, Ltd.

KEYWORDS

DoS attacks; detection method; statistical model checking; modeling tools

*Correspondence

Lynda Mokdad, UPEC Laboratoire LACL, 61 avenue du Général de Gaulle, 94010 Créteil, France.
E-mail: lynda.mokdad@u-pec.fr
1. INTRODUCTION

Detecting phenomena such as forest fires or seismic
activities implies to keep watch over wide areas.
Wireless sensor networks (WSNs) are often used to
achieve this watch. The sensors that make up those
WSNs are devices able to perform measurements on
their surrounding environment and to send the collected
data to a base station (BS). Because of their small size,
the sensors have very limited resources: memory,
computing capability, and available energy must be
spent with care [1,15,32].

Other uses of WSNs include activities such as
preventing chemical, biological, or nuclear threats in
an area, or collecting data on a military field [2,3]. In
such sensitive domains, the deployment of a WSN
brings out strong requirements in terms of security.
Various works deal with ways of preventing unautho-
rized access to data or with the necessary precautions
to guarantee data authenticity and integrity inside the
network [4,28,30,14]. But confidentiality and authenti-
cation are of poor use if the network is not even able
to deliver its data correctly.
420
1.1. Denial of service in WSNs

Denial-of-service (DoS) attacks indeed aim at reducing or
even annihilating the network ability to achieve its ordi-
nary tasks, or try to prevent a legitimate agent from using
a service [5,31,29]. Because of the limited resources of
their nodes, WSNs tend to be rather vulnerable to DoS
attacks. For instance, a compromised sensor node can be
used in order to send corrupted data at a high rate, either
to twist the results or to drain the node’s energy faster.

The problem we deal with in this paper is the develop-
ment and analysis of detection mechanisms that are
efficient both in terms of detection (i.e., they guarantee a
high rate of detection of flooding nodes) and in terms of
energy (i.e., they guarantee a balanced energy consump-
tion throughout the network).

1.2. Clustered WSNs

One way to save some battery power during communica-
tions may reside in the choice of the network architecture
and of the protocol used to route the data from a sensor
to the BS [6]. In a hierarchical WSN, the network is
Copyright © 2013 John Wiley & Sons, Ltd.

Modeling tools for detecting DoS attacks in WSNsP. Ballarini, L. Mokdad and Q. Monnet
divided into several clusters. The partitioning is carried out
according to a clustering algorithm such as Low-energy
Adaptive Clustering Hierarchy (LEACH) [7,8], Hybrid,
Energy-Efficient Distributed clustering (HEED) [9], or
one based on ultra-metric properties [10]. In each cluster,
a single common node is elected to be a cluster head
(CH), responsible for directly collecting data from the
other nodes in the cluster. Once enough data has been gath-
ered, the CHs proceed to data aggregation [11]. Then, they
forward their results to the BS. CHs are the only nodes to
communicate with the BS, either directly, through a long-
range radio transmission or by multi-hopping through
other CHs. To preserve the nodes’ energy as long as
possible, network reclustering is repeated periodically,
with different nodes being elected as CHs. Note that
clustering is not limited to a “single-level” partition. We
can also subdivide a cluster into several “sub-clusters.”
The CHs from those “sub-clusters” would then send their
aggregated data to the CHs of their parent clusters.

1.3. DoS detection: from static to dynamic
guarding policies

In a hierarchically organized WSN, a control node (cNode
in the remainder) is a node that is chosen to analyze the
traffic directed to the CH of the cluster it belongs and to
potentially detect any abnormal behavior. Therefore,
cNodes provide us with an efficient way to detect DoS
attacks occurring in the network.

Note that cNodes are only meant to detect DoS attacks;
thus, they do not perform any sensing nor send any data
(apart from attack detection alarms). cNodes-based
detection was first presented in [12], but the authors do
not mention any periodical (cNodes) re-election scheme.

One can suppose that the renewal of the election occurs
each time the clustering algorithm is repeated. In [13], we pro-
posed a dynamic approach: cNodes are re-elected periodically
(any node in a cluster may be chosen, except the CH) with
the election period selected to be shorter than that between
two network clusterings. Intuitively, such dynamic approach
(in comparison to that of [12]) leads to a more uniform en-
ergy consumption while preserving good detection ability.

1.4. Our contribution

In this paper, we address the problem of validating
the aforementioned conjecture by means of modeling
techniques. More specifically, our contribution regards
the following aspects:

(1) We present a characterization of Markov chains
models for representing DoS detection mechanisms
and detail relevant steady-state measures analyti-
cally (i.e., we give the expression for the probability
of detection of attacks in the Markov chain model).

(2) We present a number of numerical results obtained
by simulation of DoS detection on WSN models
by means of the network simulator NS-2 [26]. In
Security Comm. Networks 2013; 6:420–436 © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/sec
particular, we simulate models of grid topology
WSN including DoS (static and dynamic) detection
policies.

(3) We present formal models of the DoS detection
mechanisms expressed in terms of generalized
stochastic Petri nets (GSPN). In combination to
GSPN models, we also present a number of perfor-
mance and dependability properties formally
expressed in terms of the Hybrid Automata Stochastic
Logic (HASL) [25].

The structure of the paper is as follows. In Section 2, we
give an overview of DoS attack detection for cluster-based
WSNs. In Section 3, we detail the networking solution that
we want to model including LEACH clustering algorithm,
which we refer to. In Section 4, we describe the structure of
Markov chain models for modeling an attacked network.
In Section 5, we present simulation experiments obtained
with the NS-2 platform. In Section 6, we present the
application of statistical model checking performance
analysis to Petri Nets models of attacked WSNs. Finally,
we give some final remarks in Section 7.
2. RELATED WORKS

To deal with DoS attacks in WSNs, many research studies
have been conducted.

In [12], the authors propose a system detection based on
static election of a set of special nodes called “guarding
nodes,” which analyze the network traffic. When detecting
abnormal traffic from a given node, “guarding nodes”
identify it as a compromised node and they inform the
CH of it. In this study, the authors show the benefit of their
method by presenting numerical analysis of detection rate,
but they do not consider the energy of the elected node,
which dies very quickly.

Back in 2001, most works focused on making WSNs
feasible and useful. But some people already involved
themselves into security. For instance, Perrig et al.
proposed Security Protocols for Sensor Networks in [19]
to provide networks with two symmetric key-based
security building blocks. The first block, called Secure
Network Encryption Protocol, provides data confidentiality,
two-party data authentication, and data freshness. The
second block, called mTESLA (“micro” version of the
Timed, Efficient, Streaming, Loss-tolerant Authentication
Protocol), assumes authenticated broadcast using one-way
key chains constructed with secure hash functions. No
mechanism was put forward to detect DoS attacks.

A sensor network may be recursively and periodically
reclustered with an algorithm such as LEACH, as in our pro-
posal. The resulting hierarchically clustered network often
presents a good ability for distributing the energy consump-
tion among the sensor nodes. But security concerns (other
than DoS) also apply to those networks. In [20], Oliveira
et al. propose to add security mechanisms via a revised
version of LEACH protocol. SecLEACH uses random key
421

Modeling tools for detecting DoS attacks in WSNs P. Ballarini, L. Mokdad and Q. Monnet
pre-distribution as well as mTESLA (authenticated broadcast)
to protect communications. But the authors do not mention
any mechanism to fight DoS attacks.

Elements from game theory have been used in several
studies to detect DoS attacks in WSNs. In [16], Mohi et al.
propose another way to secure the LEACH protocol against
selfish behaviors. With S-LEACH, the BS uses a global
intrusion detection system (IDS), whereas LEACH CHs
implement local IDSs. The interactions between nodes are
modeled as a Bayesian game, that is, a game in which at least
one player (here, the BS) has incomplete information about
the other player(s) (in this case, whether the sensors have
been compromised or not). Each node has a “reputation”
score. Selfish nodes can cooperate (to avoid detection) or
drop packets. The authors show that this game has two
Bayesian Nash equilibriums, which provide a way to detect
selfish nodes or to force them to cooperate to avoid detection.

The best way to detect for sure a DoS attack in a WSN
is simply to run a detection mechanism on each single
sensor. Of course, this solution is not feasible in a network
with constraints. Instead of fitting out each sensor with
such mechanism, Islam et al. proposed in [21] to resort to
heuristics in order to set a few nodes equipped with
detection systems at critical spots in the network topology.
This optimized placement enables distributed detection of
DoS attacks as well as reducing costs and processing
overheads, because the number of required detectors is
minimized. But those few selected nodes are likely to run
out of battery power much faster than normal nodes.

Sensors authentication and DoS detection in clustered
networks may be assumed by a single architecture. In
[23], Hsieh et al. present SecCBSN, an adaptive security
design intended to Secure Cluster-Based Communication
in Sensor Networks. Each node is equipped with a system
that includes three modules. One is involved in the CH
election and responsible for remembering the decision,
which was made. Another module provides ciphered
communication and secure authentication protocols
between sensors. It uses the TESLA certificate to enable
deployed sensors to authenticate new incoming nodes. It
allows the creation of secure channels as well as broadcast
authentication between neighboring sensors. The last
security module is responsible for the detection of compro-
mised nodes. When a node is suspected to harm the
network, alarm protocols are used to warn the BS. The
use of trust value evaluation then enables the setting and
the propagation of black and white lists of sensors.

Some works examine the possibility to detect the
compromising of nodes as soon as an opponent physically
withdraws them from the network. In the method that Ho
developed in [17], each node keeps watching on the
presence of its neighbors. The Sequential Probability
Radio Test is used to determinate a dynamic time threshold.
When a node appears to be missing for a period longer than
this threshold, it is considered to be dead or captured by an
attacker. If this node is later redeployed in the network, it will
immediately be considered as compromised without having
a chance to be harmful. Nothing is done, however, if an
422 Sec
attacker manages to compromise the node without extracting
the sensor from its environment.

In [18], Misra et al. proposed a revised version of the
Optimized Link State Routing protocol. This routing
protocol called Distributed Denial of Service (DLSR) aims
at detecting distributed DoS attacks and at dropping mali-
cious requests before they can saturate a server’s capacity
to answer. To that end, the authors introduce two alert
thresholds regarding this server’s service capacity. They
also introduce the use of learning automata, automatic sys-
tems whose choice of next action depends on the result of
its previous action. There is no indication in their work
about the overhead or the energy load resulting from the
use of the DLSR protocol.

Son et al. proposed in [22] a novel broadcast authentica-
tion mechanism to cope with DoS attacks in sensor
networks. This scheme uses an asymmetric distribution of
keys between sensor nodes and the BS, and uses the Bloom
filter as an authenticator, which efficiently compresses multi-
ple authentication information. In this model, the BS or sink
shares symmetric keys with each sensor node and proves its
knowledge of the information through multiple Message
Authentication Code (MAC) values in its flooding messages.
When the sink floods the network with control messages, it
constructs a Bloom filter as an authenticator for the message.
When a sensor node receives a flooded control message, it
generates their Bloom filter with its keys and, in the same
way, the sink verifies message authentication.

Li and Batten exposed in [2] their method to detect and to
recover from path-based DoS (PDoS) attacks inWSNs. They
consider WSNs whose aim is to collect data and to store it
into small databases. PDoS attacks may prevent legitimate
communication, lead the sensors to battery exhaustion, and
corrupt the gathered data. So the authors introduce the use
of mobile agents (MAs), which use hash function values,
node IDs, and traffic table to analyze the traffic and identify
compromised sensors. Thus, theMAs are able to detect PDoS
attacks with ease and efficiency, and to reply to the attack by
proceeding to a recovery process. There are three distinct
recovery processes available, depending on the percentage
of compromised nodes in the network. Note that the authors
use the assumption that MAs cannot be compromised.
3. DETECTION OF DoS ATTACKS

3.1. Wireless sensor networks

We focus on the problem of detecting DoS attacks in a
WSN.We recall that aWSN consists of a finite set of sensors
plus a fixed BS. Traffic in aWSN (mainly) flows from sensor
nodes towards the BS. Furthermore, because WSN nodes
have inherently little energy, memory, and computing
capabilities, energy efficiency is paramount when it comes
with mechanisms/protocols for WSN management.

Also, communications between sensors and the BS rely
on wireless protocols. In the following, we assume that the
nodes’ mobility is limited or null.
urity Comm. Networks 2013; 6:420–436 © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/sec

(3)

(4)

(5)

(6)

(7)

Modeling tools for detecting DoS attacks in WSNsP. Ballarini, L. Mokdad and Q. Monnet
Our goal is to set an efficient method to detect compro-
mised nodes that may try to corrupt data, or to saturate the
network’s capacity, by sending more data than it should. In
this case, efficiency can be measured in two respects:

• the detection rate of the compromised node(s);
• the network’s lifetime, as we want to spend as little
energy as possible.

In order to achieve these goals, we focus on the following
techniques: hierarchical network clustering and dynamical
election of control nodes responsible for monitoring the traffic.

3.2. Hierarchical clustering

The class of WSNs we consider is that of hierarchically
cluster-based networks. The set of sensors has been parti-
tioned into several subsets called “clusters.” Those clusters
are themselves split into “sub-clusters.” For better clarity,
we will call 1-clusters the sets resulting from the first clus-
tering of the global set and k-clusters the subset issued
from the splitting of any (k� 1)-cluster. The successive
clusterings are carried out with the use of any existing clus-
tering algorithm, such as LEACH [7,8], HEEDS [9], algo-
rithms based on ultra-metric properties [11], and so on.
Each cluster contains a single CH, designated among the
normal nodes. The CH is responsible for collecting data
from the other nodes of the subset. To follow up our naming
conventions, we will call k-CHs the CHs belonging to the
k-clusters. The k-CHs send the data they gathered to their
(k� 1)-CH, “0-CH” being the BS. In that way, the k-CHs
are the only nodes to emit send packets towards the
(k� 1)-CHs. Normal nodes’ transmissions do not have
to reach the BS directly, which would often consume much
more energy than communicating with a neighbor node.
3.2.1. LEACH functioning
Low-energy Adaptive Clustering Hierarchy is probably

one of the easiest algorithm to apply to recluster the network.
It is a dynamical clustering and routing algorithm. We use it
for our simulations using NS-2. It splits a set of nodes into
several subsets, each containing a CH. This CH is the only
node to assume the cost-expensive transmissions to the BS.

Here is the LEACH detailed processing. Let P be the
average percentage of clusters we want to obtain from
our network at an instant t. LEACH is composed of cycles
made of 1/P rounds. Each round r is organized as follows:

(1) Each node i computes the threshold T(i):

T ið Þ ¼
P

1� P� r mod 1
Pð Þ if i has not been CH yet

0 if i has already been CH

8<
:

Each node chooses a pseudo-random number 0≤ xi≤ 1. If
xi≤ T(i), then i designates itself as a CH for the current
round. T(i) is computed in such a way that every node
Security Comm. Networks 2013; 6:420–436 © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/sec
becomes CH once in every cycle of 1/P rounds: we have
T(i) = 1 when r = (1/P)� 1.

(2) The self-designed CH inform the other nodes by

broadcasting a message with the same transmitting
power, using carrier sense multiple access (CSMA)
Media Access Control (MAC).
The other nodes choose to join the cluster associated
to the CH whose signal they receive with most
power. They message back the CH to inform it (with
the CSMA MAC protocol again).
CHs compile a “transmission order” (time division
multiple access) for the nodes that joined their
clusters. They inform each node at what time it is
expected to send data to its CH.
CHs keep listening for the results. Normal sensors
acquire measures from their environment and send
their data. When it is not their turn to send, they stay
in sleep mode to save energy. Collisions between the
transmissions of the nodes from different clusters are
limited thanks to the use of code division multiple
access protocol.
CHs aggregate and possibly compress the gathered
data, and send it to the BS in a single transmission.
This transmission may be direct, or multi-hopped if
relayed by other CHs.
Steps 5 and 6 are repeated until the round ends.
It is possible to extend LEACH by adding the remaining
energy of the nodes as a supplementary parameter for the
computation of the T(i) threshold [24].

Note that each node decides whether to self-designate
itself as a CH or not. Its decision does not take into account
the behavior of surrounding nodes. For this reason, we can
possibly have, for a given round, a number of CHs very
different from the selected percentage P. Also, all the elected
CHs may be located in the same region of the network,
leaving “uncovered” areas. In that case, one can only hope
that the spatial repartition will be better during the next round.

3.2.2. k-LEACH
Once the LEACH algorithm has been applied to determine

a first set of clusters, nothing prevents us to apply it again on
each cluster. This is how we obtained our k-clusters: we
applied k times the LEACH algorithm recursively. We call
those recursive iterations the k-LEACH algorithm. In practice,
we had k equal to 2, for the following reasons:

• to save more energy than what we would do with
1-LEACH;

• to have a finer clustering of the network, in order to
elect control nodes in each of the 2-clusters, to
maximized the cover area and the probability to detect
compromised nodes.

3.2.3. Other algorithms
Other possible clustering algorithms include HEED [9],

which is designed to save more energy than standard
423

Modeling tools for detecting DoS attacks in WSNs P. Ballarini, L. Mokdad and Q. Monnet
LEACH and could lead to a better spatial repartition of the
CHs inside the network. But in our network, all the sensors
have the same initial available energy, and every one of
them is able to directly reach the BS if need be. Under
those assumptions, LEACH may not consume more energy
than HEED protocol and remains easier to use.
3.3. Attacks detection through cNodes

Along with normal nodes and CHs, a third type of node is
present in the lower k-clusters of the hierarchy (Figure 1).

The cNodes—for control nodes—were introduced in
[12] to analyze the network traffic and to detect any
abnormal behavior from other nodes in the cluster. We
refer the reader to [12] for a detailed description of the
cNodes-based detection mechanism. In brief, cNodes
analyze the input traffic for the 2-CH of their 2-cluster
and watch out for abnormal traffic flows. Detection takes
place whenever a cNode observes that at least one among
the sensor nodes under its controlled perimeter sends data
at a rate that is not within “regular behavior” thresholds.
In that case, the cNode sends a warning message to the
CH. Once the CH has received warnings from a
sufficiently large number of distinct cNodes (note that in
order to prevent a compromised cNode to declare legiti-
mate nodes as compromised, the detection protocol
requires that the CH receives warnings by a minimum
number of distinct cNodes before actually recognizing
the signaling as an actual anomaly), it starts ignoring the
packets coming from the detected compromised sensor.
cNodes may also monitor output traffic of the CHs and
warn the BS if they come to detect a compromised CH.

cNodes are periodically elected among normal sensors.
The guarding functionality of cNodes may lead to energy
Figure 1. Cluster-based sensor network with cNodes.

424 Sec
consumption higher than that of “normal” (i.e., sensing)
nodes. In order to maximize the repartition of the energy
load, we propose a scheme by which a new set of cNodes
is periodically established with an election period shorter
than the length of a LEACH round (i.e., the period between
two consecutive CH elections). We propose three possible
methods for the election process: self-election as for the
CHs, election processed by the CHs, and election
processed by the BS.
3.3.1. Distributed self-election
The first possibility to elect the cNodes is to reuse the

distributed self-designation algorithm defined for the
election of the CHs. With this method, each non-CH node
chooses a pseudo-random number comprised between 0
and 1. If this number is lower than the average percentage
of cNodes in the network that was fixed by the user, then
the node designates itself as a cNode. Otherwise, it remains
a normal sensor.

This method has two drawbacks. Firstly, each node has
to compute a pseudo-random number, which may not be
necessary with other methods. Secondly, each node
chooses to designate (or not) itself, without taking into
account at any moment the behavior of its neighbors. As
a result, the election proceeds with no consideration for
the clustering that has been realized in the network. Indeed,
it is unlikely that the set of elected cNodes will be
uniformly distributed among the 2-clusters that were formed,
and it is even possible to end up with some 2-clusters
containing no cNodes (thus being completely unprotected
against attacks).

A possible workaround for this second drawback could
be a two-step election: in the first round, nodes self-designate
(or not) themselves. Then, they signal their state to the 2-CHs
they are associated to. In the second round, the 2-CHs may
decide to designate some additional cNodes if the current
number of elected nodes in the cluster is below a
minimal percentage.
3.3.2. Cluster head-centralized election
The second possibility is to have the cNodes elected by

the 2-CHs. In this way, each 2-CH elects the required
number of cNodes (i.e., corresponding to user specifica-
tions). For example, if the 2-cluster contains 100 nodes
and the desired percentage of cNodes in the network is
10%, the 2-CH will compute 10 pseudo-random numbers
and associate them with node IDs corresponding with
sensors of its 2-cluster. This solution is computationally
less demanding as only the 2-CHs have to run a pseudo-
random number generation algorithm. However it has yet
another drawback: if a CH gets compromised, it will not
be able to elect any cNode in its cluster thus leaving the
cluster open to attacks. As, with the LEACH protocol,
every sensor node becomes, sooner or later, a CH, the
problem may occur for any compromised node hence
propagating, potentially, throughout the network. Note that
nothing prevents a compromised sensor from declaring
urity Comm. Networks 2013; 6:420–436 © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/sec

Modeling tools for detecting DoS attacks in WSNsP. Ballarini, L. Mokdad and Q. Monnet
itself as a CH node to the others at any round of the
LEACH algorithm.

This method is the one that we have implement in our
NS-2 simulation whose simulation outcomes will be
discussed in Section 5.

3.3.3. Base station-centralized election
The third method consists in a centralized approach

where the BS performs cNodes election. With this method,
CHs send the list of nodes that compose their clusters to
the BS, and the BS returns the list of elected cNodes.
Observe that, opposite to sensor nodes, the BS has no
limitation in memory, computing capacity, nor energy.
Thus, the clear advantage of BS-centralized election is that
all costly operations (i.e., pseudo-random numbers
calculation) can be re-iterated in a (virtually) unconstrained
environment (i.e., the BS). This technique is explained in
detail in [13].

From a robustness point of view, the method is not
completely safe either. In fact, if a compromised node
was to declare itself as a CH, its escape method to avoid
detection would consist in declaring its cluster as empty
(i.e., by sending an empty list instead of the actual sensors
in its cluster to the BS). In this case, the BS would not elect
any cNode in its cluster; hence, the compromised CH
would not be detected. To avoid such situation, the BS
should react differently in case it receives an indication
of empty cluster from some nodes. Specifically, in this
case, the BS would have to consider that nodes not
detected as or by CHs might not simply be dead, thus still
consider them as eligible cNodes. The main drawback of
this method is that the distributed nature of election
(together with its advantages) is completely lost.
4. MODELING USING MARKOV
CHAINS

Continuous Time Markov Chains (CTMC) are a class of
discrete-state stochastic process suitable to model discrete-
event systems that enjoy the so-called memoryless property
(Markov property), that is, systems such that the future
evolution depends exclusively on the current state (and not
on the history that lead into it). It is well known that in order
to fulfill the Markov property, delay of events must be
exponentially distributed.

In this section, we describe how to structure CTMC
models for modeling a WSN subject to DoS attacks and
equipped with DoS detection functionalities. To illustrate
the CTMC modeling approach, we focus on a specific
(sub)class of WSN corresponding to the following points:

• The network consists of a single cluster containing
one CH, N sensing nodes, and K cNodes.

• (Exactly) one amongst the N sensing nodes is a com-
promised node.

• Sensing node i (1≤ i≤N) generates traffic according
to a Poisson process with rate li.
Security Comm. Networks 2013; 6:420–436 © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/sec
• The compromised node c generates traffic according
to a Poisson process with rate lc≫ l1.

• Each cNodes periodically performs a detection check
with period distributed exponentially with rate m. On
detection of abnormal traffic a cNode reports the
anomaly to the CH.

• The network topology corresponds to a connected
graph: each node can reach any other node in
the cluster.

The dynamics of WSN systems agreeing with the
aforementioned characterization can straightforwardly be
modeled in terms of a K � (N+ 1)-dimensional CTMC.

States of such aCTMCconsist ofK-tuples x= (x1, x2, . . ., xK)
of macro-states xk ¼ xk1 ; xk2 ; . . . ; xkN ; xkdð Þ encoding the
number of overheard packets by cNode k. More precisely,
component xkj (1≤ j≤N) of macro-state xk is a counter storing
the total number of packets sent by node j and overheard by
cNode k, whereas component xkd is a boolean-valued variable,
which is set to 1 on detection, by cNode k, of abnormal traffic.
We also consider a threshold function f :NN! {0, 1}, which is
used (by cNodes) to decide whether traffic rate have exceeded
the “normal” threshold.

The arguments of f are an (N)-tuples (n1, . . ., nN), where
ni2N is the number of overheard packets originating
from node i.

We illustrate the transition equations for such a CTMC.
For simplicity, we illustrate only equations regarding
transitions for a generic macro-state xk: the equations for
transitions of a generic (global) state x= (x1, x2, . . ., xK)
can be straightforwardly obtained by combination of those
for the macro-states. In the following, xkc denotes the
counter of received packets from the compromised node.

xk ! Normal transmission
! xk1 ; . . . ; xki þ 1; . . . ; xkc ; . . . ; xkN ; 0ð Þwith rate li 6¼ lc
! Transmission by compromised node
! xk1 ; . . . ; xki ; . . . ; xkc þ 1; . . . ; xkN ; 0ð Þwith rate lc
! Check and detection of abnormal traffic
! 0; . . . ; 0; . . . ; 0; . . . ; 0; 1ð Þ

with rate m� 1f xkð Þ≥threshold

! Check and no-detection of abnormal traffic
! 0; . . . ; 0; . . . ; 0; . . . ; 0; 0ð Þ

with rate m� 1f xkð Þ<threshold

We assume that in the initial state, all counters xki as
well as the boolean flag xkd are set to zero. The aforemen-
tioned equations can be described as follows. When cNode
k is in state xk, a “normal transmission” from node
i (1≤ i≤N, i 6¼ c) takes place at rate li, leading to a state
such that the corresponding counter xki is incremented by
one, leaving all remaining counters unchanged. Similarly,
a “transmission by the compromised node” c happens with
rate lc, leading to a state such that the corresponding
counter xkc is incremented by one. Finally, checking for
abnormal traffic conditions happens at rate m, and
425

Figure 2. A 10� 10 regular-grid cluster of size a.

Modeling tools for detecting DoS attacks in WSNs P. Ballarini, L. Mokdad and Q. Monnet
whenever the controlling function f detects that in (macro)
state xk the number of overheard packets from any node is
above the considered threshold (f(xk)≥ threshold), the
detection flag xkd is raised (i.e., alarm is sent to the CH),
and counters xkj are all reset (so that at the next check, they
are updated with “fresh” traffic data). On the other hand, if
traffic has not been abnormal over the last Exp(m) duration
(f(xk)< threshold), counters xkj are reset while the detection
flag is left equal to zero.

The detection probability for cNode k (DPk) can be
computed in terms of the steady-state distribution of the
above described CTMC in the following manner:

DPk ¼
X1

xk1 ;...;xkN

p xk1 ; . . . ; xkN ; xkd ¼ 1ð Þ

where p xk1 ; xk2 ; . . . ; xkN ; xkdð Þ denotes the steady-state
probability at (macro)state xk ¼ xk1 ; xk2 ; . . . ; xkN ; xkdð Þ of
the CTMC.

4.1. Discussion

The above described CTMC modeling approach relies on
the assumption that the period with which detection
checking is performed is an exponentially distributed
random variable. Indeed, such an assumption may
introduce a rather significant approximation as in reality
detection checking happens at interval of fixed length, or
even “continuously.” Therefore, stochastic modeling of
DoS attacks detection requires to exit the Markovian
sphere and to consider non-Markovian stochastic processes
(more specifically, periodic detection checking can more
accurately be modeled by means of deterministic distribu-
tions). We discuss non-Markovian modeling of DoS detec-
tion mechanisms in Section 6.
Table I. Simulation parameters.

Simulation time 100–3600 s
Rate 10–800 kbits/s
Packet size 500–800 bytes
Nodes number 100 (+ cluster head)
cNodes number 0–30
Compromised nodes number 1–10
Nodes queue size 50
5. NUMERICAL RESULTS

A possible alternative to stochastic modeling is to develop
executable implementations of the WSNs of interest
by means of existing simulative framework, such as the
NS-2 Network Simulator [26]. In this section, we present
a selection of numerical results obtained by simulation of
NS-2 models of WSN systems equipped with DoS
detection mechanisms. The experiments we present are
referred to one cluster consisting of a (10� 10) regular grid
topology with the following characteristics (Figure 2):

• Grid is a square of size a.
• CH is placed at the center of the grid (i.e., red node in
Figure 2).

• The grid contains 100 (sensing) nodes displaced
regularly.

• Each node can communicate directly with the CH
(i.e., the transmission power is such that all nodes—
e.g., the nodes in green in Figure 2—can reach a circle
426 Sec
of radius a
ffiffiffi
2

p
=2 . In this way all nodes, included

corner’s, can reach the CH). No power adjustment is
done by the nodes for transmission.

In such network, cNodes (represented in green in
Figure 2) are elected periodically either using the static
approach or using the dynamic election mechanism
described in previous sections. We have designed our
experiments focusing on two performance measures: the
rate of detection of attacks and the overall energy
consumption. Table I reports about the (range of)
parameters considered in our simulation experiments.
5.1. Detection rate

In order to evaluate the considered performance measure
that is attack detection rate, we have considered the
parameters given in Table I. We have assumed that the
traffic generation follows a Poisson distribution with rate
l, which varies as the average transmission of an attacking
node exceeds the average transmission of a normal node.
In the experiments, we have considered a cluster with
100 nodes.

Figure 3 represents the detection rate for different
numbers of cNode groups and for groups of different sizes.
The same node is considered compromised in all the
graphs. Notice that for 10 cNodes, group 2 did not detect
any attack. With 15 cNodes, in average, three nodes detect
urity Comm. Networks 2013; 6:420–436 © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/sec

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10

D
et

ec
tio

n
pe

rc
en

ta
ge

Group #

10 cNodes
15 cNodes
20 cNodes
25 cNodes

Figure 3. Detection versus group.

Table II. Simulation parameters.

Number of sensor nodes 100
Simulation time 500 s
Reception consumption 0.394W
Emission consumption 0.660W

0

2

4

6

8

10

12

0 5 10 15 20 25 30 35M
ea

n
co

ns
um

ed
 e

ne
rg

y
at

 t
=

 5
00

 s
 (

J)

Number of cNodes

static method
dynamic method

Figure 5. Average energy consumption.

Modeling tools for detecting DoS attacks in WSNsP. Ballarini, L. Mokdad and Q. Monnet
an attack in each group. We also note that when we
increased the number of cNodes (20 and 25), the behavior
remains similar, which suggests that we do not need to use
more nodes than 15 nodes in each group.

Above l= 4 packets/s, the dynamic method detects
more attacks than the static one.

To enhance this difference, we give other results in
Figure 4 below for an average of 10 compromised nodes.

In Figure 4, we notice that as the average transmission
of attacking nodes increases, our dynamic solution detects
more attacks than the static solution.
5.2. Consumed energy

All the simulations that were run to produce the results
presented in this section used the parameters given in Table II.

Figure 5 shows the average energy consumption for all
nodes (except for the CH and the flooding compromised
node, which consume much more than usual nodes and
act in the same way for both methods) at the end of the
simulation, for various percentages of elected cNodes.
The number of cNodes goes from 0 (no detection) to
30% (nearly one-third of the nodes).
0

20

40

60

80

100

1.5 2 2.5 3 3.5 4 4.5 5 5.5D
et

ec
tio

n
pe

rc
en

ta
ge

 in
 th

e
ne

tw
or

k

Lambda (average transmission rate of compromised node)

static method
dynamic method

Figure 4. Detection versus lambda.

Security Comm. Networks 2013; 6:420–436 © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/sec
Note that the “normal nodes” (non-cNodes sensors) do
not receive messages from their neighbors, as they are
“sleeping” between their sending time slots (see LEACH
detailed functioning).

The average consumption is the same for static and
dynamic methods: both methods use the same quantity of
normal and cNode sensors.

Figure 6 depicts the standard deviation for the energy
consumption at the end of the simulation. Once again, the
CH and the compromised node are not taken into account.

One can observe that the standard deviation is much
higher for the static solution: only the initial (and not
re-elected) cNodes have a significant consumption over
the simulation time, while the consumption is distributed
among all the periodically elected nodes in the dynamic
solution.
0

2

4

6

8

10

12

14

16

18

0 5 10 15 20 25 30 35S
td

 d
ev

ia
tio

n
of

 c
on

su
m

ed
 e

ne
rg

y
at

 t
 =

 5
00

 s
 (

J)

Number of cNodes

static method
dynamic method

Figure 6. Energy consumption standard deviation.

427

90

92

94

96

98

100

0 100 200 300 400 500 600 700 800

N
um

be
r

of
 n

od
es

 s
til

l a
liv

e

Time (seconds)

static method
dynamic method

Figure 8. Nodes remained alive

Modeling tools for detecting DoS attacks in WSNs P. Ballarini, L. Mokdad and Q. Monnet
For Figure 7, we have supposed that the nodes have an
initial energy of 4 J. This is a small value, but 500 s is a
small duration for a sensor lifetime. According to Wikipedia
values and to what we have computed, a lithium battery
(CR1225) can offer something such as 540 J, and a LR06
battery would provide something such as 15390 J. Note that
the compromised node was given an extra initial energy (we
did not want it to stop flooding the network during the
simulation). However, we set the initial energy to 4 J, and
we notice for the first node’s death for several percentages
of cNodes.

As the cNodes are re-elected and the consumption is
distributed for the dynamic method, the first node to run
out of battery power logically dies later (up to five times
later with few cNodes) than in the static method.
5.3. Nodes’ death and DoS detection

The duration of this new simulation was extended to 1 h
(3600 s). Ten per cent of the sensors are elected as cNodes.
The initial energy power was set to 10 J. So the considered
parameters are given in Table III.

Figure 8 shows the evolution of the number of alive
nodes in time.

As for the previous section, the non-cNodes sensors
barely consume any energy regarding to cNodes’ consump-
tion (cNodes consume each time they analyze a message
coming from one of their neighbor; other sensors do not).
In the static method, elected cNodes consume their battery
power and die (at about t=150 s). That is why the 10 first
sensors die quickly, whereas the other nodes last much
0

50

100

150

200

250

300

0 5 10 15 20 25 30 35

F
irs

t n
od

e
de

at
h

in
 th

e
ne

tw
or

k
(s

)

Number of cNodes

dynamic method
static method

Figure 7. First death in the network.

Table III. Simulation parameters.

Number of sensor nodes 100
cNodes percentage 10%
Simulation time 3600 s
Reception consumption 0.394W
Emission consumption 0.660W
Initial energy amount 10 J

428 Sec
longer (we expect them to live for 5 h). For the static method,
the cNodes are re-elected, so the first node to die lives longer
than for the previous method. It is a node that was elected
several times, but not necessarily each time. Only two nodes
have run out of energy at t=700 s for the dynamic method.
But at this point, the amount of alive nodes decreases
quickly, and there is only one node left at the end of the first
hour of simulation. Note that this was not reported on the
aforementioned curve.

It is obvious that the nodes die much faster in the
dynamic method, given that cNodes, the only nodes whose
consumption is significant, are re-elected, whereas there
are no more consuming cNodes in the network for the
static method after the 10 first nodes are dead. Hence, it
is interesting to consider how many nodes do effectively
detect the attack as the time passes by. This is what is
shown on Figure 9. The average number of cNodes that
detected the attack (out of 10 cNodes) is presented for each
60 s-long period.

After the fourth minute, every cNode is dead for the
static method, and the compromised node is no more
detected. With the dynamic method, a raw average of 6.5
out of 10 cNodes detect the compromised nodes during
each 10 s-long period corresponding to the dynamic
0

1

2

3

4

5

6

7

8

0 500 1000 1500 2000 2500A
ve

ra
ge

 n
um

be
r

of
 c

N
od

es
 d

et
ec

tin
g

 th

e
at

ta
ck

Time (seconds)

static method
dynamic method

Figure 9. Denial-of-service detection.

urity Comm. Networks 2013; 6:420–436 © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/sec

Modeling tools for detecting DoS attacks in WSNsP. Ballarini, L. Mokdad and Q. Monnet
election. The flooding sensor is still detected by more than
one node after half an hour.

In the following, we present a modeling approach of
DoS detection using of GSPN, and we give some numerical
results.
6. NON-MARKOVIAN MODELING
AND VERIFICATION OF DoS

In previous sections we have pointed out that using
Markov chains to model DoS detection mechanisms may
inherently imply a significant approximation.

To obtain more accurate models of DoS detection, it is
necessary to resort to a more general class of stochastic
processes, namely the so-called Discrete-Event Stochastic
Processes (DESP, also often referred to as Generalized
Semi-Markov Processes). The main characteristics of
DESP is that they allow for representing generally distributed
durations, rather than, as with CTMC, being limited to
exponentially distributed events.

In this section, we present a modeling approach of DoS
detection in terms of GSPN [27], a class of Petri Nets
suitable for modeling stochastic processes. By definition,
the GSPN formalism is a high-level language for represent-
ing CTMCs. However, herein, we refer to its straightfor-
ward extension where timed transitions can model
generally distributed durations. Such extended GSPN
(eGSPN in the following) becomes a high-level language
for representing DESPs. Furthermore, eGSPN is also the
formal modeling language supported by the COSMOS
[25] statistical model checker, a tool which allows for
verification of (sophisticated) performance measures in
terms of the HASL [25].

In the following, we provide a succinct description of
both the GSPN modeling formalism and the HASL verifi-
cation approach, before describing their application to the
DoS attack detection case.

6.1. Generalized stochastic Petri nets

A GSPN model is a bi-partite graph consisting of two
classes of nodes, places and transitions (Figure 10). Places
(represented by circles) may contain tokens (representing
P1

P2

T1 T2
T1

P1

P2

T2

3

P3

Figure 10. Simple examples of extended generalized stochastic
Petri nets: timed transitions, immediate transition, and inhibitors

arcs.

Security Comm. Networks 2013; 6:420–436 © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/sec
the state of the modeled system), whereas transitions
(represented by bars) indicate the events the occurrence
of which determine how tokens “flow” within the net (thus
encoding the model dynamics). The state of a GSPN
consists of a marking indicating the distribution of tokens
throughout the places (i.e., how many tokens each place
contains). Roughly speaking, a transition is enabled
whenever all of its input places contains a number of
tokens greater than or equal to the multiplicity of the
corresponding input arc (e.g., transition T1 in the left-hand
part of Figure 10 is enabled, whereas T2 is not). An
enabled transition may fire consuming tokens (in a number
indicated by the multiplicity of the corresponding input
arcs) from all of its input places and producing tokens
(in a number indicated by the multiplicity of the
corresponding output arcs) in all of its output places. Such
informally described rule is known as the Petri net firing
rule. GSPN transitions can be either timed (denoted by
empty bars) or immediate (denoted by filled-in bars, e.g.,
transition T2 in left-hand side of Figure 10). Generally
speaking, transitions are characterized by the following:
(1) a distribution that randomly determines the delay
before firing it; (2) a priority that deterministically selects
among the transitions scheduled the soonest, the one to
be fired; and (3) a weight that is used in the random choice
between transitions scheduled the soonest with the same
highest priority. With the GSPN formalism, the delay of
timed transitions is assumed exponentially distributed,
whereas with eGSPN, it can be given by any distribution
with non-negative support. Thus, whether a GSPN timed-
transition is characterized simply by its weight t�w (w2R+

indicating an Exp(w)-distributed delay), an eGSPN timed-
transition is characterized by a triple: t� (Dist-t,Dist-p,w),
where Dist-t indicates the type of distribution (e.g., Unif,
Deterministic, LogNormal), Dist-p indicates the para-
meters of the distribution (e.g, [a, b]), and w2R+ is used
to probabilistically choose between transitions occurring
with equal delay.†

In the following, we describe how eGSPN models can be
derived for modeling WSN scenario with DoS mechanisms.
More specifically, in our eGSPN models, we will use
only two types of timed transitions, namely exponentially
distributed timed-transitions (denoted by empty bars, e.g.,
T1 in left-hand side of Figure 10) and Deterministically
distributed timed-transitions (denoted by blue-filled-in bars,
e.g., T1 in right-hand side of Figure 10). In our Petri nets
models, we will also extensively exploit inhibitor arcs, an
additional element of the GSPN formalism. An inhibitor
arc is denoted by an edge with an empty circle in place of
an arrow at its outgoing end (e.g., the arc connecting place
P1 to transition T2 in the right-hand side of Figure 10). In
the presence of inhibitor arcs, the semantics of GSPN firing
rule is slightly modified; thus, a transition is enabled
whenever all of its input places contains a number of tokens
greater than or equal to the multiplicity of the corresponding
†A possible condition in case of non-continuous delay distribution.

429

Figure 11. Generalized stochastic Petri nets model of a sensing
node.

Modeling tools for detecting DoS attacks in WSNs P. Ballarini, L. Mokdad and Q. Monnet
input arc and strictly smaller than the multiplicity of the
corresponding inhibitor arcs (e.g., transition T2 in right-hand
part of Figure 10 is also enabled, because P1 contains less
than three tokens). Having summarized the basics of the
syntax and semantics of the eGSPN formalism, we now
describe how it can be applied to formally represent WSN
systems featuring DoS mechanisms.

6.2. Modeling DoS attacks with eGSPN

We describe the eGSPN models we have developed for
modeling DoS attacks in a grid-like network. For simplicity,
we illustrate an example referred to a 9� 9 grid topology.
The proposed modeling approach can easily be extended to
larger networks.

In a WSN with DoS detection mechanisms, the
functionality of sensing nodes is different from that of
cNodes. Here, we describe GSPN models for representing
the following: (i) sensing nodes; (ii) statically elected
cNodes; and (iii) dynamically eligible cNodes.

6.2.1. GSPN model of sensing nodes
Sensing nodes functionality is trivially simple: they

simply keep sending sensed data packets at a pace that
(following Section 4) we assume to be exponentially
distributed with rate li.

This can be modeled by a simple GSPN that consists of a
single exponentially distributed timed-transition (labeled TX)
with no input places (i.e., always enabled) and with as many
outgoing arcs leading to the input buffer of the neighboring
det

K

In_buff

check_YES

(static) cNode

K

check_NO

emptying
buff

e-on

e-end

(a) GSPN model for a statically
 elected cNode

Figure 12. Generalized stochastic Petri nets components represent
mechanis

430 Sec
nodes (represented by dashed places labeled InBuff ij in
Figure 11). Note that transition TX in Figure 11 has no input
places, which means (according to the Petri Net firing rule)
that it is always (i.e., perpetually) enabled. Note also that TX
is an exponentially distributed timed-transition with rate li,
which complies with the assumption that each sensor node
performs a sensing operation every ds time with ds�Exp(li).
To summarize, the sensing functionality of a specific node
in a WSN is modeled by a single timed-transition provided
with as many outgoing arcs as the number of neighbors of
that node. The complete sensing functionality of a WSN
can be modeled by combining several such GSPN modules.

6.2.2. GSPN model of cNodes
A cNode functionality, on the other hand, is entirely

devoted to monitoring of traffic of the portion of WSN it
is guarding on. From a modeling point of view, a distinc-
tion must be made between the case of statically elected
cNodes (as in [12]) and that of dynamically eligible
cNodes (as in [13]). In fact, with dynamic cNodes election,
each node in the network can be elected as cNode;
therefore, each node can switch between a sensing-only
functionality and a controlling functionality. On the other
hand, static cNodes will be control-only nodes.

Generalized stochastic Petri nets models for both static
and dynamic cNodes are depicted in Figure 12(a) and (b),
respectively. A cNode detects an attack whenever the
overheard traffic throughput (i.e., number of overheard
packets per observation period) exceeds a given threshold
rattack. Place “InBuff” (Figure 12(a)) represents the input
buffer of a node, where packets received/overheard from
neighbor nodes are placed. The “InBuff” place receives
tokens (corresponding to overheard packets) through input
arcs originating from neighbors sensing-node modules
(i.e., the input arcs of place “InBuff” are the output arcs of
the timed transition representing the corresponding sensing
activity of each neighbor node).

To model the traffic monitoring functionality of
cNodes, we employ two mutually exclusive, deterministi-
cally distributed timed-transitions labeled “checkYES”
and “checkNO” in Figure 12(a) and (b). They correspond
to the periodic verification performed by the cNode to
det

K

In_buff

check_YES

generic Node

K

check_NO

emptying
buff

e-on

e-end

cNode

TX

(b) GSPN model for a dynamically
 eligible cNode

ing cNodes behavior in a WSN with denial-of-service detection
ms.

urity Comm. Networks 2013; 6:420–436 © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/sec

Modeling tools for detecting DoS attacks in WSNsP. Ballarini, L. Mokdad and Q. Monnet
check whether the frequency of incoming traffic has been
abnormal (over the last period). At the end of each (fixed)
interval [0,Δ], either transition “checkYES” is enabled, if
at least k packets have been received (i.e., place “InBuff”
contains at least k tokens), or transition “checkNO” is
enabled, if less than k packets have been received (i.e., place
“InBuff” contains less than k tokens). In the first case
(i.e., “checkYES” enabled), a token is added in the
output place “det” representing the occurrence of a
DoS detection; otherwise (i.e., “checkNO” enabled), no
tokens is added to place “det.”

After firing of either the “checkYES” or the “checkNO”
transition, the emptying of the input buffer starts by adding
a token in place “empty.” This enables either immediate
transition “e-on” (which iteratively fires until the input
buffer is empty) or “e-end,” which represents the end of
the emptying cycle. Note that buffer emptying does
not consume time, and it is needed in order to correctly
measure the frequency of traffic at each successive
sampling interval [0,Δ].

The GSPN model for the dynamic cNodes (Figure 12
(b)) is a simple extension of that for static cNodes obtained
by adding an auxiliary place “cNodes” and an auxiliary
exponentially distributed timed-transition “TX.” This is
needed because with dynamically elected cNodes, each
Figure 13. Generalized stochastic Petri nets model of a 9� 9 grid top

Security Comm. Networks 2013; 6:420–436 © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/sec
node in the network may periodically switch from
sensing-only to controlling-only functionality; hence,
the corresponding GSPN model must represent both
aspects. If the auxiliary place “cNode” contains a token,
then the “controlling” functionality (i.e., the left part of
the GSPN) is switched-on, and in that case, the GSPN
of Figure 12(b) behaves exactly as that of Figure 12(a).
Conversely, if place cNode is empty, then the “sensing”
functionality is switched-on (i.e., transition “TX” is
enabled because of the inhibitor arc between place
“cNode” and transition “TX”) while the “controlling”
part of the net is disabled (i.e., in this case, the net of
Figure 12(b) behaves exactly as that of Figure 11).

The earlier described GSPN models for sensing nodes,
static cNodes, and dynamic cNodes can be used as basic
building blocks to compose models of specific WSN
topologies. In the following, we provide examples of
GSPN for 9� 9 WSN grid topology equipped with DoS
detection functionalities.

6.2.3. GSPN model of DoS detection with
static cNodes

Figure 13 illustrates a complete GSPN model for a
9� 9 grid topology representing an example of DoS detec-
tion with static election of cNodes (as in [12]). In particular
ology with one (fixed) compromised node and two static cNodes.

431

Modeling tools for detecting DoS attacks in WSNs P. Ballarini, L. Mokdad and Q. Monnet
in this example, we consider the presence of two cNodes
(i.e., nodes 3 and 4) and one compromised node (i.e., node
1). Note that for simplicity, the “emptying buffer” part in
the GSPN modules of the cNodes (i.e., nodes 3 and 4) is
depicted as a box (i.e., the content of that box corresponds
to the subnet responsible for emptying the “inBuff” place
as depicted in Figure 12(a) and (b)).

This model can be used to study the performances of
DoS detection with static cNodes in much respect, such
as measuring the expected number of detected attacks
within a certain time bound or also assessing the average
energy consumption of cNodes. In the next section, we
describe how to build GSPN models of WSNs with
DoS detection and dynamic election of cNodes. The
resulting GSPN is more complex than that for statically
elected cNodes, as it must include an extra module,
namely a GSPN module for periodically electing the
cNodes.
6.2.4. GSPN model of DoS detection with
dynamic cNodes

Figure 14 illustrates the GSPN model of a 9� 9 grid
topology for the case of DoS detection with dynamic
election of cNodes (as in [13]). For simplicity, Figure 14
consists of two parts: the actual network topology part
(Figure 14(a)) and the cNodes random election mechanism
(Figure 14(b)).

The network model (Figure 14(a)) is obtained by
composition of node’s GSPN component in the same
fashion as for the model of the WSN for DoS detection
with static cNodes, only that now, all nodes must be recon-
figurable as either sensors or controllers (thus, the basic
GSPN components used to build the network topology
are those of Figure 12(b)).

The cNodes election component (Figure 14(b)), on the
other hand, consists of a single place, n mutually exclusive
deterministically distributed timed-transitions (blue-filled)
and nmutually exclusive immediate transitions (black-filled)

(with n ¼ 8
2

� �
¼ 28, as we assume that, at each round, two

cNodes are elected out of eight possible candidates; thus, for
simplicity, we rule out the compromised node from the
eligible ones). The deterministically distributed timed-
transitions (blue-filled) of Figure 14(b) correspond to all
possible different pairs of “cNode” places. At the end of
each selection period, only (exactly) one such timed
transition will be enabled and will fire retrieving, in this
way, the tokens from the current pairs of active cNodes
and inserting one token in the only (central) place of the
net in Figure 14(b). At this point, all 28 immediate transi-
tions will become enabled and a random choice will take
place resulting in the selection of only (exactly) one of
them. The selected transition will fire and by doing so will
insert one token into each “cNode” place of the
corresponding pair of cNodes to which it is connected,
activating, in this way, the controlling functionality of
the newly elected cNodes.
432 Sec
6.3. HASL verification of DoS detection
models

One of the main motivations for developing GSPN models
of discrete-event systems is that a fairly large and well-
established family of formal methods can be applied to
analyze them. Recently, a new formalism called HASL
has been introduced, which provides a unified framework
both for model checking and for performance and depend-
ability evaluation of DESP models expressed in GSPN
terms. In essence, given a GSPN model, we can express
sophisticated performance measures in terms of an HASL
formula and apply a statistical model checking functionalities
to (automatically) assess them. In the following, we informally
summarize the basics about the HASL verification approach,
referring the reader to [25] for formal details.

6.3.1. HASL model checking
Model checking [34] is a formal verification procedure

by which given a (discrete-state) model M and a property
formally expressed in terms of a temporal logic formula
’, an algorithm automatically decides whether ’ holds
in M (denoted M ⊨’). In the case of stochastic models
(i.e., stochastic model checking [33]), formulae are asso-
ciated with a measure of probability and verifying M ⊨’
corresponds to assess the probability of ’ with respect to
the stochastic model M. HASL model checking extends
this very simple concept in the sense that an HASL
formula can evaluate to any real number (thus, it can
represents a measure of probability as well as other
performance measures).

To do so, HASL uses Linear Hybrid Automata (LHA)
as machineries to encode the dynamics (i.e., the execution
paths or trajectories) of interest of the considered GSPN
model. An LHA, simply speaking, is a generalization of
timed automaton where clock variables are replaced by
real-valued data variables.

In practice, a formula of HASL consists of two parts:

• An LHA used as a selector of relevant of timed execu-
tion of the considered DESP (path selection is
achieved by synchronization of a generated DESP
trajectory with the LHA).

• An expression Z built on top of data variables of the
LHA according to the syntax given in Equation (1)
and which represent the measure to be assessed.

Z ::¼ E Yð Þ jZ þ ZjZ � Z
Y ::¼ c Y þ Yj jY � YjY=Y j last yð Þjmin yð Þ

max yð Þj j int yð Þj avg yð Þ
y ::¼ c xj jyþ yjy� yjy=y

(1)

The informal meaning of an HASL expressions Z (1) is
as follows: x is a data variable of the LHA automaton
associated to the expression. y is an (arithmetic) expression
of data variables. Y is a path random variable, i.e., a
variable that is evaluated against a synchronization path,
a path resulting by the synchronization of a trajectory of
urity Comm. Networks 2013; 6:420–436 © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/sec

gN4

gN3gN2

gN8gN7

gN6gN5

gN9

det2 det3

det6det5det4

det7 det8

det9

compromised
node

K K

K K
KK

K
K

Deterministic Delay

Exponential Delay

b2 b3

b4

b7 b8 b9

b6b5

input buffer of node i b_i

det_i num. of detections by node i

gN_i node i is a gNode

TX2

TX9TX8TX7

TX4 TX6TX5

TX3

ck2 ck3

ck4 ck5 ck6

ck7 ck8 ck9

(a) the traffic part in a 9x9 topology

gN2

gN2

gN2

gN2

gN2

gN2

gN2

gN3

gN4

gN5

gN6

gN7

gN8

gN9
gN3

gN3

gN3

gN3

gN3

gN4

gN5

gN6

gN7

gN8
gN3

gN9
gN4

gN5

gN
4

gN
4

gN
4

gN
4

gN
5

gN
5

gN
5gN

6

gN
7

gN
8

gN
9

gN
6

gN
7

gN
8

gN
5

gN
6

gN
6

gN
6

gN
7gN

9

gN
7

gN
8

gN
9

gN
8

gN
7 gN

9
gN

8 gN
9

gN2

gN2

gN2

gN2

gN2

gN2

gN2

gN3

gN4

gN5

gN6

gN7

gN8

gN9
gN3

gN3

gN3

gN3

gN3

gN4

gN5

gN6

gN7

gN8
gN3

gN9
gN4

gN5

gN
4

gN
4

gN
4

gN
4

gN
5

gN
5

gN
5 gN

6

gN
7

gN
8

gN
9

gN
6

gN
7

gN
8

gN
5

gN
6

gN
6

gN
6

gN
7 gN

9

gN
7

gN
8

gN
9

gN
8

gN
7

gN
9

gN
8

gN
9

Deterministic-delayed transitions Immediate transitions

(b) the random election policy part: 2 cNodes are elected out of 8

Figure 14. Generalized stochastic Petri nets model of a 9� 9 grid topology with one (fixed) compromised node and two randomly
elected cNodes.

Modeling tools for detecting DoS attacks in WSNsP. Ballarini, L. Mokdad and Q. Monnet
the DESP with the LHA associated to the formula. The
basic operators (i.e., last(y), min(y), max(y), int(y), avg(y))
on top of which a path variable Y is built have intuitive
Security Comm. Networks 2013; 6:420–436 © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/sec
meanings. In particular, last(y) indicates the last value of
expression y along an accepted synchronized path, min
(y) andmax(y) indicate the minimum and the maximum
433

Modeling tools for detecting DoS attacks in WSNs P. Ballarini, L. Mokdad and Q. Monnet
of y along a path, int(y) the integral of y along a path, and
avg(y) the average of y along a path.

The HASL statistical model checking procedure works
as follow:

• It takes a GSPN model and an HASL formula.
• It iteratively generate trajectories of GSPN model
state-space and synchronize them with the LHA.

• The trajectories that have been “accepted” by the
LHA are considered in the estimation of the measure
of interest; the others are dropped.

6.4. HASL formulae for DoS models

Having seen the nature of HASL verification, we provide
here few examples of HASL formulae (i.e., LHA+ expres-
sion) that can be used to assess performance measures of
the DoS (GSPN) models presented in the previous section.
Such formulae may be readily assessed through the COS-
MOS model checker, and the results can be used to
compare different DoS detection mechanisms.

The LHA we present are based on the following data
variables:

• xt: global time.
• xdi: number of attacks detected by cNode i (1≤ i≤N).
• xTXi: number of data transmitted by node i (1≤ i≤N).
• xbfi : flow of packets in buffer of node i (1≤ i≤N).

The LHA in Figure 15 is a template automaton that can
be used for calculating different measures of a node (either
a sensing or a cNode) of a WSN model. It refers to GSPN
models (Figures 1 and 2). It consists of two locations and
refers to the four data variables described earlier. In the
initial location (l1), the rate of change (i.e., the first derivative)
of data variables is indicated (inside the circle). The global
time variable xt is incremented with rate _xt ¼ 1 following
the linear flow of time. Counter variables xdi and xTXi (used
to count occurrences of events) are unchanged in location l1
(i.e., their rates are zero). Finally, variable xbfi is incremented
with rate proportional to the number of tokens in the input
buffer of cNode i (i.e., _xbfi ¼ M bfið Þ); this data variable can
Figure 15. A Linear Hybrid Automata for assessing relevant
measures of denial-of-service generalized stochastic Petri

nets models.

434 Sec
be used to measure the average length of overheard packets
by cNode i and thus to measure the average energy consump-
tion of a cNode. The two self-loops transitions on location l1
are used to increment the counter variables xdi and xTXi on
occurrence of the associated events in the GSPN model.
For example, transition l1true; chkYESif g; xdi :¼ xdi þ 1l1
indicate on occurrence of the GSPN transition labeled chkYESi
(i.e., detection of an attack by cNode i) the variable xdi is
incremented by 1. Transition l1xt==T, {ALL},∅ l2 from l1 to
the accepting location l2 indicates when the synchronization
stops and the processed path is accepted. Precisely, this
happens as soon as xt==T, where T2R denotes a time bound,
that is, as soon as the observed trajectories is such that the
simulation time is T. In this case, no matter which GSPN
transition is occurring (i.e., synchronization set is {ALL}),
the transition from l1 to l2 will fire and the path generation will
stop by accepting the path. In other words, the LHA in
Figure 15 trivially accepts all paths of duration T. The value
of the four data variables collected during synchronization
of the LHA with the GSPN model will be then used for
estimating relevant Z expressions.

In the following, we describe few examples of Z expres-
sions that can be used in association to the LHA in
Figure 15 to evaluate relevant measures of the DoS GSPN
models.

• Z1 � E last xdið Þð Þ : the expected number of detected
attacks by cNode i after T time units.

• Z2 � E last xdi þ x dið Þð Þð Þ: the sum of attacks detected
by cNode i and i00 after T time units.

• Z3 � E last xTXið Þð Þ : the expected value of packets
transmitted by node i after T time units.

• Z4 � E avg xbfi
� �� �

: the expected cumulative flow of
packets received by node i within T time units.
7. CONCLUSION

Detection of DoS attacks is a fundamental aspect of WSN
management. In this paper, we have considered a class of
DoS detection mechanisms designed to operate on
clustered WSNs. The detection methods we have consid-
ered are based on deployment of special control nodes in
the sensing field: that is, specific nodes that are responsible
for monitoring the throughput of traffic of specific parts of
the sensing field and signaling the presence of suspected
attacked nodes in case anomalies are detected. Control
nodes election is a crucial aspect of DoS mechanisms. In
the literature, two basic election approaches have been
proposed: a static election and a dynamic (random) election.

In this paper, we presented different modeling
approaches for obtaining models of WSNs with DoS func-
tionalities. First, we have described how Markov chains
model should be structured for modeling DoS attack and
detection, pointing out that because of the nature of DoS
detection, Markovian models may inherently come with
some significant approximation. We have then presented
urity Comm. Networks 2013; 6:420–436 © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/sec

Modeling tools for detecting DoS attacks in WSNsP. Ballarini, L. Mokdad and Q. Monnet
numerical results obtained with virtual WSN implementa-
tion by means of the NS-2 network simulator. The
outcome of such simulative experiments confirm the
intuition that cNodes dynamic allocation guarantees a
more uniform energy consumption (throughout the
network) while preserving a good detection capability.
Finally, we have presented formal non-Markovian models
of DoS detection in terms of GSPN, a high-level formalism
for generic DESP. We have illustrated how model of WSNs
with DoS can be built “incrementally” by combination of
small GSPN modules of single (sensing/controlling) nodes
up to obtaining a model of the desired network.We have also
stressed how the GSPN formalism is naturally well suited for
modeling of the dynamic random cNodes election policy.
Finally, we have briefly presented how expressive perfor-
mance measures of the DoS GSPN models can be formally
expressed and assessed by means of the recently introduced
HASL. Future developments of this work include the execu-
tion of actual verification experiments on the presented
GSPN models by means of the COSMOS statistical model
checker, as well as the extension of the proposed modeling
approaches to consider more complex network (different
topologies and scales).
REFERENCES

1. Anastasi G, Conti M, Di Francesco M, Passarella A.
Energy conservation in wireless sensor networks: a
survey. Ad Hoc Networks 2009; 7:537–668.

2. Li B, Batten L. Using mobile agents to recover from
node and database compromise in path-based DoS
attacks in wireless sensor networks. Journal of
Network and Computer Applications 2009; 32:377–387.

3. ClaycombWR, Shin D. A novel node level security pol-
icy framework for wireless sensor networks. Journal of
Network and Computer Applications 2011; 34:418–428.

4. Simplicio MA Jr., De Oliveira BT, Barreto PSLM,
Margi CB, Carvalho TCMB, Naslund M. Comparison
of authenticated-encryption schemes in wireless sensor
networks, 36th Annual IEEE Conference on Local
Computer Networks, Bonn, Germany, 2011.

5. Hu F, Sharma N. Security considerations in ad hoc
sensor networks. Ad Hoc Networks 2005; 3:69–89.

6. Ai J, Turgut D, Bölöni L. A cluster-based energy bal-
ancing scheme in heterogeneous wireless sensor net-
works. Proceedings of International Conference on
Networking, April 2005; 467–474.

7. Heinzelman WR, Chandrakasan A, Balakrishnan H.
Energy-efficient communication protocol for wireless
microsensor networks. Proceedings of the IEEE Hawaii
International Conference on System Sciences, 2000.

8. Ozdemir S, Xiao Y. Secure data aggregation in wire-
less sensor networks: a comprehensive overview.
Computer Networks 2009; 53:2022–2037.
Security Comm. Networks 2013; 6:420–436 © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/sec
9. Younis O, Fahmy S. HEED: a hybrid, energy-efficient
distributed clustering approach for ad hoc sensor
networks. IEEE Transactions on Mobile Computing

2004; 3(4):366–379.
10. Fouchal S, Lavallée I. Fast and flexible unsupervised

clustering algorithm based on ultrametric properties.
Proceedings of the 7th ACM Symposium on QoS and
Security for Wireless and Mobile Networks, Miami,
USA, 2011.

11. Liang Y. Efficient temporal compression in wireless
sensor networks, 36th Annual IEEE Conference on
Local Computer Networks, Bonn, Germany, 2011.

12. Lai GH, Chen CM. Detecting denial of service attacks
in sensor networks. Proceedings of the Fourth IASTED
International Conference on Communication, Network
and Information Security (CNIS’07); 109–115.

13. Guechari M, Mokdad L, Tan S. Dynamic solution for
detecting denial of service attacks in wireless sensor
networks. ICC June 2012.

14. Yahya B, Ben-Othman J. Energy efficient and QoS
aware medium access control for wireless sensor
networks. Concurrency and Computation: Practice
and Experience 2010; 22(10):1252–1266.

15. Ben-Othman J, Yahya B. Energy efficient and QoS
based routing protocol for wireless sensor networks.
Journal of Parallel and Distributed Computing 2010;
70(8):849–857.

16. Mohi M, Movaghar A, Zadeh PM. A Bayesian game
approach for preventing DoS attacks in wireless sensor
networks. International Conference on Communica-
tions and Mobile Computing, 2009.

17. Ho J-W. Distributed Detection of Node Capture
Attacks in Wireless Networks. In Smart Wireless
Sensor Networks, Chinh HD, Tan YK (eds). 2010.
Available from: http://www.intechopen.com/books/
smart-wireless-sensor-networks/distributed-detection-
of-node-capture-attacks-in-wireless-sensor-networks

18. Misra S, Krishna PV, Abraham KI, Sasikumar N,
Fredun S. An adaptive learning routing protocol
for the prevention of distributed denial of service
attacks in wireless mesh networks. Computers
and Mathematics with Applications 2010; 60:
294–306.

19. Perrig A, Szewczyk R, Wen V, Culler D, Tygar JD.
SPINS: security protocols for sensor networks. Mobile
Computing and Networking: Rome, Italy, 2001.

20. Oliveira LB, Ferreirac A, Vilaça MA, et al. SecLEACH
– on the security of clustered sensor networks. Signal
Processing 2007; 87:2882–2895.

21. Islam MH, Nadeem K, Khan SA. Optimal sensor
placement for detection against distributed denial of
service attacks. Pakistan Journal of Engineering and

Applied Sciences 2009; 4:80–92.
435

http://www.intechopen.com/books/smart-wireless-sensor-networks/distributed-detection-of-node-capture-attacks-in-wireless-sensor-networks
http://www.intechopen.com/books/smart-wireless-sensor-networks/distributed-detection-of-node-capture-attacks-in-wireless-sensor-networks
http://www.intechopen.com/books/smart-wireless-sensor-networks/distributed-detection-of-node-capture-attacks-in-wireless-sensor-networks

Modeling tools for detecting DoS attacks in WSNs P. Ballarini, L. Mokdad and Q. Monnet
22. Son JH, Luo H, Seo SW. Denial of service attack-
resistant flooding authentication in wireless sensor
networks. Computer Communications 2010; 33:
1531–1542.

23. Hsieh MY, Huang YM, Chao HC. Adaptive security de-
sign with malicious node detection in cluster-based
sensor networks. Computer Communications 2007;
30:2385–2400.

24. Handy MJ, Haase M, Timmerman D. Low energy
adaptive clustering hierarchy with deterministic cluster-
head selection. Proceedings of the 4th IEEE Conference
on Mobile and Wireless Communications Networks,
Stockholm, Sweden, 2002.

25. Ballarini P, Djafr H, Duflot M, Haddad S, Pekergin N.
HASL: an expressive language for statistical verifica-
tion of stochastic models. Proceedings of the 5th Inter-
national Conference on Performance Evaluation
Methodologies and Tools (ValueTOOLS11), Cachan,
France, 2011.

26. The Network Simulator NS-2. http://www.isi.edu/
nsnam/ns/

27. Ajmone Marsan M, Balbo G, Conte G, Donatelli S,
Franceschinis G.Modelling with Generalized Stochastic
Petri Nets. John Wiley & Sons, 1995. http://www.di.
unito.it/~greatspn/GSPN-Wiley/

28. Ben-Othman J, Bessaoud K, Bui A, Pilard L. Self-
stabilizing algorithm for efficient topology control
436 Sec
in Wireless Sensor Networks. Elsevier, Journal of
Computational Science (JOCS) In press.

29. Fouchal H, Habbas Z. Distributed backtracking algo-
rithm based on tree decomposition over wireless sensor
networks. Concurrency and Computation: Practice and
Experience, September 2011. DOI: 10.1002/cpe.1804.

30. Ben-Othman J, Saavedra Benitez Y. IBC-HWMP: a
novel secure identity-based cryptography-based
scheme for Hybrid Wireless Mesh Protocol for IEEE
802.11s. In Concurrency and Computation: Practice
and Experience. Wiley, In press.

31. Dessart N, Fouchal H, Hunel P, Vidot N. Anomaly
detection with wireless sensor networks. The 9th IEEE
International Symposium on Network Computing and
Applications (NCA 2010), IEEE CS Press, Cambridge,
MA, USA, July 2010.

32. Bernard T, Fouchal H. A low energy consumption
MAC protocol for WSN. IEEE ICC 2012, Ottawa,
Canada, June 2012.

33. Kwiatkowska M, Norman G, Parker D. Stochastic
model checking, In Formal Methods for the Design
of Computer, Communication and Software Systems:
Performance Evaluation (SFM’07), LNCS (Tutorial
Volume): Bertinoro, Italy, Vol. 4486, 2007.

34. Clarke EM, Grumberg O, Peled DA. Model Checking.
MIT Press, 1999. http://mitpress.mit.edu/catalog/item/
default.asp?ttype=2&tid=3730
urity Comm. Networks 2013; 6:420–436 © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/sec

http://www.isi.edu/nsnam/ns/
http://www.isi.edu/nsnam/ns/
http://www.di.unito.it/~greatspn/GSPN-Wiley/
http://www.di.unito.it/~greatspn/GSPN-Wiley/
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=3730
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=3730

