
DoS detection in WSNs: Energy-efficient methods for selecting
monitoring nodes

Quentin MONNET1, Lynda MOKDAD1∗, Paolo BALLARINI2, Youcef HAMMAL3,
Jalel BEN-OTHMAN4

1 Université Paris-Est, LACL (EA 4219), UPEC, France
2 Université Paris-Saclay, Centrale-Supélec, MICS, France

3 University of STHB, LSI Laboratory, Algeria
4 Université Paris 13, L2TI (EA 3043), France

SUMMARY

The use of wireless sensor networks (WSNs) has increased rapidly over the last years. Due to their low resources,
sensors come along with new issues regarding network security and energy consumption. Focusing on the
network availability, previous studies proposed to protect clustered network against denial of service attacks
with the use of traffic monitoring agents on some nodes. Those control nodes have to analyze the traffic inside a
cluster and to send warnings to the cluster-head whenever an abnormal behavior (e.g., high packets throughput,
or non-retransmission of packets) is detected. But if the control nodes (cNodes) die out of exhaustion, they leave
the network unprotected. To better fight against attacks, we try to enhance this solution by renewing periodically
the election process. Furthermore, we propose three energy-aware and secure methods to designate the cNodes in
a hierarchically clustered WSN. The first one is a simple self-election process where nodes randomly designate
themselves. It leads to a better load balancing than a static method (i.e., with no renewal), but we argue that we
can obtain better results by considering the remaining energy of the nodes at cNodes selection time. Hence the
second algorithm is purely based on the residual energy of the sensors. We discuss limitations of this deterministic
process concerning security and cluster coverage, and suggest workarounds. These improvements lead us to
the third mechanism. It is based on residual energy too, but it includes a democratic election process in which
nodes in the cluster vote to optimize the cNode role attribution. Results obtained from simulation experiments
with the ns-2 tool are provided to analyze the energy repartition in the network and to compare the three
selection algorithms. All experimental outcomes show improvements of the load balancing in the network, while
maintaining good detection coverage, in regard to static selection. Furthermore, the analysis of the respective
performances of the three mechanisms is used as a basis to establish recommendations regarding the use cases of
those methods.
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1. INTRODUCTION

Wireless sensor networks Smart cities or the Internet of Things are foreseen to deeply change people’s
daily lives. Such projects will interconnect a multitude of devices and bring many functionalities to
the end users through an extensive use of sensors. Ambient light, temperature, air pollution degree
measurement, or traffic monitoring are just a few examples of applications involving those sensors.
There will be sensors everywhere, to gather amounts of data that human beings alone could not measure:
sensors deployed as networks can perform constant monitoring tasks over wide—and sometimes hard to
access—areas.

Such networks are called wireless sensor networks (WSNs). The sensors (or nodes) are small devices
able to gather data on their physical environment. They communicate with one another through radio
transmission, but they have low resources at their disposal: limited computing power, limited memory,
as well as a limited battery [1, 2]. They are often dropped into hostile areas (by helicopter for instance), or
may generally be difficult to access, so the batteries must be considered as single-use. The sensors have
to self-organize themselves and to deploy low-consuming routing algorithms so as to create a functional
network. All relevant data is typically forwarded to an entity called the base station (BS), which does
not have the same limitations as the sensors, and acts as an interface between the WSN and the operator
(or the external world) as displayed on Figure 1.

Figure 1. Clustered wireless sensor networks scheme

Wireless sensor networks may be deployed for all kinds of applications, some of them being crucial.
For instance there is a lot at stakes when sensor networks are used for forest fires detection. Critical
cases also involve all military uses of the sensors: they can be used to detect the presence of biological,
chemical or nuclear agent, or to monitor infantry units over battlefields [3]. Such contexts bring strong
requirements in terms of security guarantees for the network. Various works deal with ways of preventing
unauthorized access to data, or with the necessary precautions to guarantee data authenticity and integrity
inside WSNs [4, 5]. But confidentiality as well as authentication are of little use if the network is not
even able to deliver its data correctly.

Denial of Service in WSNs Denial of Service (DoS) attacks indeed aim at reducing, or even
annihilating, the network ability to achieve its ordinary tasks, or at preventing a legitimate agent from
using a service [6]. Because of the limited resources of their nodes, WSNs tend to be rather vulnerable
to DoS attacks. Concrete attacks include jamming the communications, monopolizing the channel
(“greedy” attacks) or attempting sleep deprivation on “normal” sensors, for example. They are launched
from the outside as well as from the inside of the network: a compromised sensor node can be used
in order to send corrupted data at a high rate, either to twist the results or to drain the nodes’ energy
faster. Attacks can target all layers of the network, although we mainly focus here on the Media Access
Control (MAC) and routing layers. The problem we tackle is the development and analysis of detection
mechanisms that are efficient both in terms of detection (i.e., they guarantee a high rate of detection
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of compromised nodes) and in terms of energy (i.e., they guarantee a balanced energy consumption
throughout the network).

Clustered WSNs One way to save some battery power during communications may reside in the
choice of the network architecture and of the protocol used to route data from a sensor to the BS. In
a hierarchical WSN, the network is divided into several clusters. The partition is done according to a
clustering algorithm such as LEACH [7, 8], HEED [9], or one based on ultra-metric properties [10, 11].
In each cluster, a single common node is designated and becomes a cluster head (CH), responsible for
directly collecting data from the other nodes in the cluster. Once enough data has been gathered, the
CHs proceed to data aggregation [12]. Then they forward their data to the BS. CHs are the only nodes to
communicate with the BS, either directly, through a long-range radio transmission, or by multi-hopping
through other CHs (see Figure 1). So as to preserve the nodes’ energy as long as possible, the network
reclustering is repeated periodically, with different nodes being elected as CHs. Note that clustering is
not limited to a “single-level” partition. We can also subdivide a cluster into several “subclusters”. The
CHs from those “subclusters” would then send their aggregated data to the CHs of their parent clusters.

DoS detection: from static to dynamic guarding policies In a hierarchically organised WSN, a
control node (cNode in the remainder of this article) is a node that is chosen to analyze the traffic directed
to the CH of the cluster it belongs to, and potentially detect any abnormal behavior. Therefore, cNodes
provide us with an efficient way to detect DoS attacks occurring in the network. Note that cNodes are
only meant to detect DoS attacks, thus they do not perform any sensing, nor do they send any data (apart
from attack detection alarms). cNodes-based detection was first presented in [13], but the authors do not
mention any periodical (cNodes) re-election scheme. One can suppose that the renewal of the election
occurs each time the clustering algorithm is repeated. In [14], we proposed a dynamic approach: cNodes
are re-elected periodically (any node in a cluster may be chosen, except the CH) with the election period
selected to be shorter than that between two network clusterings. Intuitively such a dynamic approach (in
comparison to that of [13]), leads to more uniform energy consumption while preserving good detection
ability.

Our contribution We propose a dynamic renewal of the designation process of the cNodes. The
process itself can be performed by applying different algorithms:

1. Nodes can selected in a random fashion, but it is possible to achieve a better balance of the energy
consumption.

2. Thus we also propose a second designation process which is based on energy, in order to obtain
better performances. We propose to designate the sensors for the cNode position according to
their residual energy, but we show that several problems occur with deterministic election. Indeed,
compromised nodes could see a flaw to exploit in order to take over the cNode role and decrease the
odds of being detected by announcing high residual energy. We address this issue by introducing
a second role of surveillance: we choose “vNodes” responsible for watching over the cNodes and
for matching their announced consumption against mathematical model. We also recommend that
every node in the cluster is monitored by at least one cNode, to prevent all the cNodes to be elected
inside the same spatial area of the cluster at each election iteration.

3. This second method leads to a better equilibrium of the energy flow inside the cluster, but the
overall consumption increases because of the vNodes. This is why we propose a third method
called “democratic election” process, which reuses the observations performed by the cNodes
to eliminate the need for vNodes. Furthermore, this third election method can use additional
parameters such as index connectivity or signal power for selecting the optimal monitoring nodes.

The three selection methods are evaluated with the ns-2 tool. We analyze the numerical results and
provide comparison of the three processes, as well as recommendations on use case scenarios for each
method.
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Outline The remainder of this work is organized as follows: Section 2 presents related work. In
Section 3 we give an overview of DoS attack detection for cluster-based WSNs, based on the use of
monitoring nodes. It is followed by three sections introducing three distinct selection processes for these
monitoring nodes. Thus Section 4 presents the random-based selection mode, while Section 5 introduces
a scheme based on residual energy of the nodes, tackling the issues of a deterministic algorithm. Section 6
deals with the self-election process used to improve performances upon the method based on residual
energy. Numerical results obtained through network simulations with the ns-2 tool are provided in
Section 7, and they lead to comparison of the three selection methods and to usage recommendations in
Section 8. Finally, Section 9 permits us to sum up our contributions and to consider future work leads.

2. RELATED WORK

This section is divided into three parts: security in wireless sensor networks, denial of service specific
mechanisms, and clustering algorithms and energy preservation.

2.1. Security in WSNs

Denial of service is not the only type of attack a WSN should resist to. Security in general in sensor
networks has attracted quite a lot of interest during the last few years. Hence it has been the subject of
many studies in literature, as well as several state-of-the-art articles [15, 16].

Confidentiality and integrity must be ensured to prevent attackers access to or tampering with
sensitive data. A number of solutions have been proposed [8], many of them involving strong [4]
and/or homomorphic [17] cryptography, some relying on other mechanisms such as multi-path based
fragmentation of the packets [18] or game theory [19].

Authentication brings to participants the guarantee that the peer they are communicating with truly is
what it pretends to be; that is another important point. It has been deeply investigated as well [20]. Many
lightweight proposals for key management in WSNs have been suggested [21, 22].

Apart from those, there have been a variety of proposals to secure other elements, on a basis
than any information about any aspect of the network might be valuable to an attacker. Hence there
are approaches, for instance, to secure the geographical location of the nodes through epidemical
information dissemination [23] as well as through more conventional mechanisms [24].

2.2. DoS-specific mechanisms

Denial-of-service attacks embrace many different attacks, which can target all layers of the network [25].
Jamming the radio frequencies as well as disturbing the routing protocols are just two examples of ways
to harm the network. In reaction to these, a number of solutions have been proposed [26]. As stated in the
introduction, we focus in this paper on inside attackers attempting to bend the MAC protocol parameters
to their needs, be it to achieve better performances for themselves (greedy attacks) or to generally harm
the network (jamming attacks or sleep deprivation). To detect such attackers, many solutions rely on
trust models [27, 28] with agents applying a set of rules [29] on traffic to attribute a trust value to each
of the nodes in the network. Below are outlined some notable proposals.

Back in 2001, most work focused on making WSNs feasible and useful. But some people already
involved themselves into security. For instance, SPINS (Security Protocols for Sensor Networks) was
proposed in [30] to provide networks with two symmetric key-based security building blocks. The first
block, called SNEP (Secure Network Encryption Protocol), provides data confidentiality, two-party data
authentication and data freshness. The second block, called µTESLA (“micro” version of the Timed,
Efficient, Streaming, Loss-tolerant Authentication Protocol) assumes authenticated broadcast using one-
way key chains constructed with secure hash functions. No mechanism was put forward to detect DoS
attacks.
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The best way to detect for sure a DoS attack in a WSN is simply to run a detection mechanism on each
single sensor. Of course, this solution is not feasible in a network with constraints. Instead of fitting out
each sensor with such mechanism, it is proposed in [31] to resort to heuristics in order to set a few nodes
equipped with detection systems at critical spots in the network topology. This optimized placement
enables distributed detection of DoS attacks as well as reducing costs and processing overheads, since
the number of required detectors is minimized. But those few selected nodes are likely to run out of
battery power much faster than normal nodes.

Some works examine the possibility of detecting the compromising of nodes as soon as an opponent
physically withdraws them from the network. In the method that is developed in [32], each node keeps
a watch on the presence of its neighbors. The Sequential Probability Radio Test (SPRT) is used to
determine a dynamic time threshold. When a node appears to be missing for a period longer than this
threshold, it is considered to be dead or captured by an attacker. If this node is later redeployed in the
network, it will immediately be considered as compromised without having a chance to be harmful.
Nothing is done, however, if an attacker manages to compromise the node without extracting the sensor
from its environment.

In [33], a revised version of the OLSR protocol is proposed. This routing protocol called DLSR aims at
detecting distributed denial of service (DDoS) attacks and at dropping malicious requests before they can
saturate a server’s capacity to answer. To that end, the authors introduce two alert thresholds regarding
this server’s service capacity. The authors also use Learning Automata (LAs), automatic systems whose
choice of next action depends on the result of its previous action. There is no indication in their work
about the overhead or the energy load resulting from the use of the DLSR protocol.

A novel broadcast authentication mechanism can also be deployed so as to cope with DoS attacks in
sensor networks such as in [34]. This scheme uses an asymmetric distribution of keys between sensor
nodes and the BS, and uses the Bloom filter as an authenticator, which efficiently compresses multiple
authentication information. In this model, the BS or sink shares symmetric keys with each sensor node,
and proves its knowledge of the information through multiple MAC values in its flooding messages.
When the sink floods the network with control messages it constructs a Bloom filter as an authenticator
for the message. When a sensor node receives a flooded control message, it generates their Bloom filter
with its keys and in the same way the sink verifies message authentication.

Much of our work relies on the work of Lai and Chen who proposed in [13] a system detection
based on static election of a set of nodes called “guarding nodes” which analyze traffic in a clustered
network. When detecting abnormal traffic from a given node, “guarding nodes”—we call them cNodes—
identify it as a compromised node and inform the cluster head of it. On reception of reports from several
distinct cNodes (to prevent false denunciation from a compromised node), the CH virtually excludes the
suspicious node from the cluster. The authors show the benefit of their method by presenting numerical
analysis of detection rate. Although the method is efficient for detecting rogue nodes, the authors do
not give details of the election mechanism for choosing the cNodes. Also, there is no mention in their
study of renewing the election in time, which causes the appointed cNodes to endorse heavier energy
consumption on a long period.

2.3. Clustering algorithms and energy preservation

A lot of approaches intended to bring security into a WSN are cluster-based [35]. But the main purpose
of clustering a sensor network usually resides in scaling possibilities, improved nodes management and
energy savings brought by partitioning. Several clustering algorithms have been proposed [36]. They
generally aim at determining which nodes in the network will be the cluster heads, often basing the
choice on energetic considerations. Basically, choosing a cluster head in a network is not so different
than selecting cNodes in a cluster. But in the latter case we have some additional constraints on security.

One of the easiest clustering algorithms to implement, and probably one of the most used, is the
LEACH algorithm [37].
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2.3.1. LEACH functioning LEACH is likely one of the easiest algorithm to apply to recluster the
network. It is a dynamical clustering and routing algorithm. It splits a set of nodes into several subsets,
each containing a cluster head. This CH is the only node to assume the cost-expensive transmissions to
the BS.

Here is the LEACH detailed processing. Let P be the average percentage of clusters we want to get
from our network at an instant t. LEACH is composed of cycles made of 1

P rounds. Each round r is
organized as follows:

1. Each node i computes the threshold T (i):

T (i) =


P

1− P ·
(
r mod 1

P

) if i has not been CH yet

0 if i has already been CH

Each node chooses a pseudo-random number 0 ≤ xi ≤ 1. If xi ≤ T (i) then i designates itself as
a CH for the current round. T (i) is computed in such a way that every node becomes CH once in
every cycle of 1

P rounds: we have T (i) = 1 when r = 1
P − 1.

2. The self-designed CHs inform the other nodes by broadcasting a message with the same
transmitting power, using carrier sense multiple access (CSMA) MAC.

3. The other nodes choose to join the cluster associated to the CH whose signal they receive with
most power. They message back the CH to inform it (with the CSMA MAC protocol again).

4. CHs compile a “transmission order” (time division multiple access, TDMA) for the nodes which
joined their clusters. They inform each node at what time it is expected to send data to its CH.

5. CHs keeps listening for the results. Normal sensors get measures from their environment and send
their data. When it is not their turn to send, they stay in sleep mode to save energy. Collisions
between the transmissions of the nodes from different clusters are limited thanks to the use of
code division multiple access (CDMA) protocol.

6. CHs aggregate, and possibly compress the gathered data and send it to the BS in a single
transmission. This transmission may be direct, or multi-hopped if relayed by other CHs.

7. Steps 5 and 6 are repeated until the round ends.

It is possible to extend LEACH by adding the remaining energy of the nodes as a supplementary
parameter for the computation of the T (i) threshold.

Note that each node decides whether to self-designate itself as a CH or not. Its decision does not take
into account the behavior of surrounding nodes. For this reason, we can possibly have, for a given round,
a number of CHs very different from the selected percentage P . Also, all the elected CHs may be located
in the same region of the network, leaving “uncovered” areas. In that case, one can only hope that the
spatial repartition will be better during the next round.

2.3.2. LEACH improvements There are a number of proposals derived from LEACH, to improve
either its efficiency [38, 39] or its security. In [40], the authors propose to add security mechanisms
via a revised version of LEACH protocol. SecLEACH uses random key predistribution as well as
µTESLA (authenticated broadcast) so as to protect communications. But the authors do not mention
any mechanism to fight DoS attacks.

In [41], the authors propose another way to secure the LEACH protocol against selfish behaviors,
using elements from game theory. With S-LEACH, the BS uses a global Intrusion Detection System
(IDS) while LEACH CHs implement local IDSs. The interactions between nodes are modeled as a
Bayesian game, that is, a game in which at least one player (here, the BS) has incomplete information
about the other player(s) (in this case: whether the sensors have been compromised or not). Each node
has a “reputation” score. Selfish nodes can cooperate (so as to avoid detection) or drop packets. The
authors show that this game has two Bayesian Nash equilibriums which provide a way to detect selfish
nodes, or to force them to cooperate to avoid detection.
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Other algorithms Other possible clustering algorithms include HEED [9], which is designed to save
more energy than standard LEACH, and could lead to a better spatial repartition of the CHs inside the
network. But in our network, all the sensors have the same initial available energy, and every one of them
is able to directly reach the BS if need be. Under those assumptions, LEACH may not consume more
energy than HEED protocol, and remains easier to use.

Note that, aside from clustering, the importance of energy issues in WSNs has led to proposals of
several mechanisms to cut down its consumption [42], based for example on packet priority [43].

3. DESCRIPTION OF DOS DETECTION METHOD

3.1. Wireless Sensor Networks

We focus on the problem of detecting denial of service (DoS) attacks in a WSN [44]. We recall that a
WSN consists of a finite set of sensors plus a fixed base station (BS). Traffic in a WSN (mainly) flows
from sensor nodes towards the BS. Furthermore since WSN nodes have inherently little energy, memory
and computing capabilities, energy efficiency is paramount when it comes with mechanisms/protocols
for WSN management. In the following we assume that the mobility of the nodes is limited or null.

Our goal is to set an efficient method to detect compromised nodes which may try to corrupt data, or
to saturate the network’s capacity, by sending more data than it should. In this case, efficiency can be
measured in two ways:

• the detection rate of the compromised node(s);
• the network’s lifetime, as we want to spend as little energy as possible.

In order to achieve these goals we focus on the following techniques: hierarchical network clustering,
and dynamical election of control nodes responsible for monitoring the traffic.

3.2. Hierarchical clustering

The class of WSNs we consider is that of hierarchically cluster-based networks. The set of sensors has
been partitioned into several subsets, which are themselves split into subclusters. For more clarity, we
will call 1-clusters the sets resulting from the first clustering of the global set, and k-clusters the subset
issued from the splitting of any (k − 1)-cluster. The successive clusterings are carried out with the use
of any existing clustering algorithm, such as LEACH [7, 8], HEED [9], algorithms based on ultra-metric
properties [12], et cætera. Each cluster contains a single cluster head (CH), designated among the normal
nodes. The CH is responsible for collecting data from the other nodes of the subset. To follow up our
naming conventions, we will call k-CHs the CHs belonging to the k-clusters. The k-CHs send the data
they gathered to their (k − 1)-CH, the “0-CH” being the base station. In that way, the k-CHs are the only
nodes to send packets to the (k − 1)-CHs. Normal nodes’ transmissions do not have to reach the base
station directly, which would often consume much more energy than communicating with a neighbor
node. An example 2-clustered network is displayed on Figure 2.

k-LEACH Once a clustering algorithm has been applied to the network to determine a first set of
clusters, nothing prevents us to apply it again on each cluster. This is the way we got our k-clusters:
we applied the LEACH algorithm k times recursively. We call those recursive iterations the k-LEACH
algorithm. In practice, we had k equal to 2, for the following reasons:

• so as to save more energy than what we would do with 1-LEACH;
• so as to have a finer clustering of the network, in order to elect control nodes in each of the 2-

clusters, to maximized the cover area and the probability of detecting compromised nodes.
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3.3. Attacks detection through cNodes

Along with normal nodes and cluster heads, a third type of node is present in the lower k-clusters of the
hierarchy. The cNodes—for control nodes—were introduced in [13] to analyze the network traffic and
to detect any abnormal behavior from other nodes in the cluster.

Control nodes watching over the input traffic allow the detection of various types of denial of service
attacks. This is achieved with agents running on the cNodes and applying specific rules on overheard
traffic [29]. Each rule is used to fight against one (sometimes a few) specific attack(s): jamming,
tampering, black hole attacks, and so on. Each time a cNode notices that a rule is broken by a node,
it raises a bad behavior for this node, and send an alert to the cluster head. Following are some example
rules:

• Rate rule: assuming that minimal and maximal rates for data each node sends are enforced, a
bad behavior will be reported if those rates are not respected. With this rule, monitoring agents
should be able to detect negligence (if minimal rate is not reached) or flooding (if maximal rate is
exceeded) attacks.

• Retransmission rule: a cNode overhearing a packet supposed to be retransmitted by one of its
neighbor (the neighbor node is not the final destination for this packet). If the concerned neighbor
does not forward the packet, it may be undertaking a black-hole (full dismissal of packets) or a
selective forwarding attack.

• Integrity rule: a bad behavior will be raised if a neighbor of the node running the monitoring agent
tampers with a packet before forwarding it. Applying this rule assumes that the nodes are not
expected to proceed either to data aggregation or compression before forwarding.

• Delay rule: forwarding a packet should not exceed a threshold delay.
• Replay rule: a message should be sent no more than a limited number of times.
• Jamming rule: an unusually high number of collisions (compared to average, or concerning only

some nodes) may be related to the presence of a jamming node. If jamming is done with random
noise, without legitimate packets containing a node identifier, it may be difficult to detect the
source of it, but several cooperating agents should be able to detect it.

• Radio transmission range rule: a node sending messages with an unexpectedly high power may be
trying to launch a hello flood (it tries to appear in the neighbor list of as many nodes as possible) or

Figure 2. Scheme of a twice clustered WSN
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wormhole attack (it redirects a part of the overheard traffic to another part of the network). Hence
it may be consider as a bad behavior.

In the rest of this study, we will not describe in details each one of the mentioned attacks, nor will
we detail the associated solutions to counter them. When details are needed, we will consider only one
example: flooding attacks. The model of a flooding attack is the following: a malicious node sends a
high amount of data to prevent legitimate nodes from communicating by saturating the medium, or by
establishing too many connections with the receiver node [45]. In wireless sensor networks, it is also
used to drain the energy of neighbor nodes.

So cNodes analyze the input traffic for the 2-CH of their 2-cluster, and watch out for abnormal traffic
flows. Detection takes place whenever a rule is broken. In that case the cNode sends a warning message
to the CH. In order to prevent a compromised cNode to declare legitimate nodes as compromised the
detection protocol requires that the CH receives warnings by a minimum number of distinct cNodes
before actually recognising the signaling as an actual anomaly. Once the CH has received warnings from
a sufficiently large number of distinct cNodes it starts ignoring the packets coming from the detected
compromised sensor. cNodes may also monitor output traffic of the CHs and warn the BS if they come
to detect a compromised CH.

Observations cNodes apply a very basic trust based scheme to the cluster: when a sensor node
breaks a rule, for example by exceeding a given threshold for transmitted packets, it is considered as
untrustworthy. There are many other trust based schemes in the literature, most of them more advanced
than this one (see Section 2). The cNodes could implement several other trust mechanisms (by lowering a
score on bad behavior for each node, for instance). As more complex mechanism would create additional
overhead, we prefer to limit ourselves to this simple method in this study.

3.4. Periodical renewing of the cNodes

cNodes are periodically elected among normal sensors. The guarding functionality of cNodes may lead
to an energy consumption higher than that of “normal” (i.e., sensing) nodes. In order to maximize the
repartition of the energy load, we propose a scheme by which a new set of cNodes is periodically
established with an selection period shorter than the length of a LEACH round (that is, the period
between two consecutive CH elections).

This dynamical renewing of the selection process is an essential part of our proposal. Many of the
recent intrusion detection systems proposed for WSNs tend to be lightweight, to consume little energy.
We believe that a dynamical renewing of the selected cNodes helps a lot to balance the load inside the
cluster. Depending on the application running in the network, maybe this balancing is not worth the
constraints induced by periodical re-election, but generally energy preservation is a priority in WSNs
and distributing the consumption among all the nodes helps to maintain the highest possible amount of
nodes in activity for as long as possible. Also, lightweight IDSs themselves may be designed to minimize
the disparities in energy consumption inside a network, but we argue that with a system as simple as the
cNodes, simulation results indicate that the savings are not negligible.

A second thing to consider is that the recursive clustering as well as the dynamic renewing of the
monitoring nodes can be used with other detection systems than the cNodes we use here. If an IDS is
good at preserving energy and balancing nodes, but needs to be run only by a subset of the nodes in the
network, dynamical selection processes presented in this work can be applied so as to select the sensors
which will run the system (provided the monitoring sensors do not need any specific hardware that would
differentiate them from the “normal” nodes).

Renewing the cNodes implies running a selection algorithm. There are many ways to proceed: in
following sections, we present three different methods permitting to designate the cNodes for a new
period, with their respective pros and cons.
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4. RANDOM SELECTION

The first method for cNodes selection is a random-based selection: a pseudo-random number generator
is used to determine the set of cNodes.

We propose three possible implementations for this process: self-election as for the CHs, election
processed by the CHs and election processed by the BS.

Distributed self-election The first possibility to process to the random selection of the cNodes is
to reuse the distributed self-designation algorithm defined for the election of the CHs. With this
implementation, each non-CH node chooses a pseudo-random number comprised between 0 and 1. If
this number is lower than the average percentage of cNodes in the network that was fixed by the user,
then the node designates itself as a cNode. Otherwise, it remains a normal sensor.

This method has two drawbacks. First, each node has to compute a pseudo-random number, which
may not be necessary with other methods. Second, each node chooses to designate (or not) itself, without
taking into account at any moment the behavior of its neighbors. As a result, the election proceeds with
no consideration for the clustering that has been realized in the network. Indeed it is unlikely that the
set of elected cNodes will be uniformly distributed among the 2-clusters that were formed, and it is
even possible to end up with some 2-clusters containing no cNodes (thus being completely unprotected
against attacks).

A possible workaround for this second drawback could be a two-steps election: in a first round nodes
self-designate (or not) themselves. Then they signal their state to the 2-CHs they are associated to. In
the second round, the 2-CHs may decide to designate some additional cNodes if the current number of
elected nodes in the cluster is below a minimal percentage.

CH-centralized election The second possibility is to get the cNodes elected by the 2-CHs. In this
way, each 2-CH elects the required number of cNodes (i.e., corresponding to user specifications). For
example, if the 2-cluster contains 100 nodes and the desired percentage of cNodes in the network is 10 %,
the 2-CH will compute 10 pseudo-random numbers and associate them with node IDs corresponding
with sensors of its 2-cluster. This solution is computationally less demanding as only the 2-CHs have to
run a pseudo-random number generation algorithm. However it has yet another drawback: if a CH gets
compromised, it won’t be able to elect any cNode in its cluster, thus leaving the cluster open to attacks.
As with the LEACH protocol, every sensor node becomes, sooner or later, a CH, the problem may occur
for any compromised node hence propagating, potentially, throughout the network. Note that, nothing
prevents a compromised sensor to declare itself as a CH node to the others at any round of the LEACH
algorithm.

This method is the one that we have implemented in our ns-2 simulation.

BS-centralized election The third method consists in a centralized approach where the BS performs
cNodes election. With this method CHs send the list of nodes that compose their clusters to the base
station and the BS returns the list of elected cNodes. Observe that, opposite to sensor nodes, the BS
has no limitation in memory, computing capacity or energy. Thus the clear advantage of BS-centralized
election is that all costly operations (i.e., pseudo-random numbers calculation) can be reiterated in a
(virtually) unconstrained environment (i.e., the BS) This technique is explained in detail in [14].

From a robustness point of view note that this method is not completely safe either. In fact, if a
compromised node was to declare itself as a CH, its escape method to avoid detection would consist of
declaring its cluster as empty (i.e., by sending an empty list instead of the actual sensors in its cluster to
the BS). In this case, the BS would not elect any cNode in its cluster, hence the compromised CH would
not be detected. To avoid such a situation, the BS should react differently in case it receives an indication
of empty cluster from some nodes. Specifically, in this case, the BS would have to consider that nodes
not detected as or by CHs might not simply be dead, and thus still consider them as eligible cNodes. The
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main drawback of this method is that the distributed nature of election (together with its advantages) is
completely lost.

The random selection method is easy to deploy, and has little overhead; but it does not balance the
energy consumption very well inside the cluster. In order to obtain better performances, we could for
instance consider the available residual energy at cNodes selection time.

5. SELECTION BASED ON RESIDUAL ENERGY

5.1. Selection process

Electing the cNodes is not an easy task. In previous section we exposed and compared three possible
implementations for random selection of those sentry nodes:

• pseudo-random election by the base station;
• pseudo-random election by the cluster head;
• pseudo-random election by the nodes themselves.

We assumed that election should be random so that compromised nodes would not be aware of which
node could control the traffic. We did not consider the remaining energy during the cNodes election. But
monitoring the traffic implies to keep listening for wireless transmission without interruption. Hence
cNodes will have a greater energy consumption than normal nodes. Given that preserving energy is an
essential issue in the network, we now prefer to ensure load balancing rather than assuring a pseudo-
random election, and thus to consider the residual energy of the nodes during the election. This choice
also raises new issues and makes us define a new role for the nodes in the cluster†.

5.2. Using vNodes to ensure a secured deterministic election

The issue with energy measurement is that no agent in the network is able to measure the residual energy
of a given node N , but the node itself. The neighbor nodes of N may record messages sent from N and
compute a rough estimate, but as they know neither the initial amount of energy of N (at the network
deployment) nor the energy N spent for listening, estimates can not be used to obtain values precise
enough so as to reliably sort the nodes according to their residual energy.

So the only way to get the residual energy of a node is to ask this node. The election algorithm we
propose is described as follows:

1. During the first step, each node evaluates its residual energy and sends the value to the cluster
head;

2. Having received the residual energy of all nodes in the cluster, the cluster head picks the n nodes
with the highest residual energy (where n is the desired number of cNodes during each cycle) and
returns them a message to assign them the role of cNode.

It is a deterministic selection algorithm that eliminates any random aspect from the process. The rule is
simple: nodes possessing the highest residual energy will be elected. Given that the cNode role implies
consuming more energy (cNodes listen to surrounding communications most of the time), rotation of
the roles is theoretically assured. But the deterministic aspect is also a flaw that may be exploited by
compromised nodes. This is a crucial issue: we can not neglect compromised nodes as the whole cNodes
mechanism is deployed in the sole purpose to detect them!

More precisely, the problem may be stated as follows. Compromised nodes will be interested in
endorsing a cNode role, as it enables them:

†The recursive k-clustering is used in this section in the same way as in former section. And yet for simplicity we will only
mention “clusters”, as the solution is not dependent of the depth of recursive clustering.
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• to reduce the number of legitimate cNodes able to detect them;
• to advertise the cluster head about “innocent” sensing nodes to have them revoked.

When a pseudo-random election algorithm is applied, a compromised node (or even several ones) can
be elected during a cycle, but it will loose its role further in time, for later cycles. Even with a self-
election process, compromised nodes can keep their cNode role as long as they want, but they can not
prevent other (legitimate) nodes to elect themselves, too. With deterministic election, however, they can
monopolize most of the available cNode roles. They only have to announce the highest residual energy
value at the first step of the election to get assured to win. If there are enough compromised nodes to
occupy all of the n available cNode roles, then they become virtually immune to potential detection.

To prevent nodes from lying when announcing their residual energy, we propose to assign a new
role to some of the neighbors of each cNode. Those nodes—we call them vNodes, as for verification
nodes—are responsible for the surveillance of the monitoring nodes. Once the cNodes election is over,
each neighbor to a cNode decides with a given probability whether it will be a vNode for this cNode or
not. A given node can act as a vNode for several cNodes (in other words, it can survey several neighbor
cNodes).

If this role consumes too much energy, it is not worth deploying vNodes: we should rather use pseudo-
random election for the cNodes. So vNodes must not stay awake and listen most of the time, as cNodes
do. Instead they send, from time to time, requests to the cNode they watch over, asking it for its residual
energy. They wait for the answer, and keep the value in memory.

Once they have gathered enough data, vNodes try to correlate the theoretical model of consumption
of the cNode they survey and its announced consumption, deduced from broadcast messages (during
elections) and answers to requests from vNodes. Four distinct cases may occur:

1. The announced consumption does not correlate (at all) with the theoretical model: there is a high
probability the node is compromised and seeks to take over cNode role. It is reported to the cluster
head.

2. The announced consumption correlates exactly with the theoretical model: the node is probably
a compromised node trying to get elected while escaping to detection (in other words, the rogue
cNode adapts its behavior regarding to the previous point). It is easy to detect the subterfuge as
values received from the rogue node and the ones computed by the vNodes are exactly the same.
It is reported to the cluster head.

3. The announced consumption correlates roughly with the theoretical model, but does not evolve
in the same way (with regard to the model) as the real consumption locally observed by the
vNodes (local (in time) evolution of the announced consumption does not “stick” to the one of
the surrounding vNodes, which should roughly rise or decrease during the same periods). The
node is probably compromised, trying to escape detection by decreasing its announced energy
with random values. It is reported to the CH.

4. The announced consumption correlates roughly with theoretical model, and evolves in the same
way as the traffic observed by vNodes. Whether the node is compromised or not, it has normal
behavior and is allowed to act as a cNode.

If a given vNode is in fact a malicious node, it could lie about integrity of the cNode it watches. To
prevent that, the cluster head must receive multiple reports (their number exceeding a predetermined
threshold) from distinct vNodes before actually considering a cNode as compromised. To some extent,
this also makes the scheme resilient to errors from the vNodes.

In that way, nodes are allowed to act as cNodes only if they announce plausible amounts of residual
energy. Assuming that this role consumes more energy than sensing only, the nodes elected as cNodes
will sooner or later see their residual energy drop below the reserve of normal sensing nodes, which
implies that they will not get re-elected at the next election. Note that the cases 2 and 3 make a
compromised node decrement its announced energy as the time goes by. Even if inconsistency may
be noticed and the compromise detected, this simple behavior ensures that the rogue node will stop
being elected at some point in time.
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Thus, the interest of vNodes can be summarized as follows: a compromised node cannot ensure the
takeover of the cNode role at each cycle without cheating when announcing residual energy, and hence
being detected by the vNodes. Detecting rogue cNodes, or forcing them to give up their role for later
cycles, are the two purposes of the vNodes. The vNode role does not prevent a node from processing
to its normal sensing activity (requests to cNodes must not occur too often, or too much power will be
drained from the vNodes). The state machine of the nodes is presented in Figure 3.

Mathematical model for energy consumption A possible mathematical model that the cluster heads
may use for computing the energy consumed by the nodes based on received observations is Rakhmatov
and Vrudhula’s diffusion model [46]. It provides a pretty accurate approximation of real consumption,
taking into account chemical processes internal to the battery such as rate capacity effect and recovery
effect. Rakhmatov and Vrudhula’s diffusion model refers to the chemical reaction happening inside the
battery electrolyte, and is summarized by equation (1):

σ(t) =

∫ t

0

i(τ) dτ︸ ︷︷ ︸
l(t)

+

u(t)︷ ︸︸ ︷∫ t

0

i(τ)

(
2

∞∑
m=1

exp−β
2m2(t−r)

)
dτ (1)

where:

• σ(t) is the apparent charge lost from the battery at t.
• l(t) is the charge lost to the load (“useful” charge).
• u(t) is the unavailable charge (“lost in battery” charge).
• i(t) is the current at t.

• β =
π
√
D

w
, where D is the diffusion constant and w the full width of the electrolyte of the battery.

In practice, computing the first ten terms of the sum provides a good approximation.

5.3. Cluster coverage in case of heterogeneous activity

Deterministic election of the cNodes does not only introduce a flaw that compromised nodes could try
to exploit. There is a second problem, independent from the nodes’ behavior, which could prevent the
detection of compromised nodes. If a region of the network happens to produce more traffic activity than
the other parts of the network, the energy of its nodes will be drawn faster. In consequence, none of the
n nodes with the highest residual energy (n being the desired number of cNodes during each cycle) will
be located inside this region, and some nodes may not be covered for surveillance as long as traffic does
not fade, possibly for all cycles. Figure 4 illustrates this problem.

cNodes’ range
does not cover

all nodes in cluster

cNodes

CH

nodes with low
residual energy

area with
high activity

cluster

Figure 4. Illustrative scheme: cNodes are elected inside the area with less activity (thus with more residual energy)
and do not cover nodes from the opposite side of the network

To address this issue we need to ensure that every node in the network is covered by at least one
cNode. So the election process we presented in subsection 5.2 needs to be modified. The correct version
is as follows:
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Figure 3. State machine of the (non-CH) nodes
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1. During the first step, each node evaluates its residual energy and broadcasts the value;
2. The cluster head listens to all values. Other nodes also register all messages they hear into memory;
3. All nodes send to the CH the list of their 1-hop neighbors‡;
4. The CH picks the n nodes among those with the highest residual energy, such that the n nodes

cover all other nodes in range. If needed, it selects some additional nodes to cover all the cluster;
5. The CH returns a message to selected nodes to assign them the role of cNode.

Note that some clustering algorithms (such as HEED [9], for example) provide other election
mechanisms (for cluster heads, but that can also be used for selecting cNodes) based on residual energy.
We do not want to use it because energy only takes part in the process as a factor for the probability that
the nodes declare themselves elected. Instead we prefer nodes to broadcast their residual energy in order
to enable surveillance by the vNodes.

This second cNodes selection method is based on residual energy and intuitively brings a better
balance to the network; but adding a second surveillance role (vNodes) adds to the complexity of the
process, and increases the global consumption as well. A better approach might reside in reusing the
observations made by the cNodes to elect the next set of monitoring nodes.

6. DEMOCRATIC ELECTION

Our third selection mechanism is called a democratic election, because it makes sensors vote for the
nodes that will be selected as cNodes.

To detail this process, we will adopt the following notation. Let the symbol N denote the set of all
nodes in the network and CN denote the set of cNodes. i is the index ranging over N . Let REk be
an array of residual energies of nodes reported by cNodes to the cluster head at the kth iteration. The
symbol Obsk[j] denotes an array containing observations made by cNode j on communications of its
neighbors.

The election process starts with an initialization phase and then enters a loop block which is iteratively
performed as long as the network is running.

6.1. Initialization phase

At the start of the process, the following actions are undertaken:

• Each node i in the network sends to the cluster head the value of its residual energy which is stored
into a related array RE0[i].

• Each node acts as a cNode and starts controlling its neighbors. It keeps collecting and forwarding
data (otherwise there would be no traffic to observe). Since the set of cNodes contains all nodes of
the network, each node starts recording the communications made by its neighbors.

• The cluster head sets the counter of iterations k to 1.

6.2. Loop block

At each iteration k, the election process executes the next steps.

1. The duration of this surveillance step at any iteration k is random to prevent compromised nodes
to simulate the behavior of sane nodes as long as possible. During step 1, each cNode controls the
neighboring nodes (including other cNodes) by recording and adding up sizes of all packets sent
or received by these nodes. Recall that all nodes in the first iteration (k = 1) are cNodes.

‡We do not deal with the case of compromised nodes cheating at this step of the process. Indeed they could announce extra
virtual neighbors to try to escape from coverage.
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2. At the end of iteration k, the cluster head (CH) asks each node i to send its residual energy
value REk[i] and asks each cNode j to send the array Obsk[j] containing its observations over
transmission rates of its neighbors.

3. For each node i, the cluster head performs an analysis work as follows:

• According to an adequate mathematical model, the CH assesses the energy consumption
ECa related to the maximum of rates {Obsk[j][i]}|j∈CN observed by neighboring cNodes j
during the current iteration k.

• The CH also computes the value of the energy consumption ECd as the difference between
residual energies declared in the two last steps (i.e., REk[i] and REk−1[i]).

• If |ECd− ECa| ≤ ε (where ε represents a tolerated error) then the node i is declared as sane
and put into the set SEN of nodes eligible to take on a cNode functioning mode. Otherwise,
it is removed from the set SEN of sane nodes (if it was there) and put into the pool SSN of
suspicious nodes.

• Let SSN [i] stand for the number of times it has declared as suspicious from the start of the
process. If SSN [i] ≥ threshold then the node is declared as compromised and put into a
quarantine list. On the other hand, if a suspicious node has continually been declared as sane
(more than some number of times) then it could be removed from SSN and put again into
SEN .

4. Once step 3 is finished, the CH selects cNodes from the set SEN of eligible nodes in such a way
that every node is controlled by at least two cNodes. Hence, as a cNode will be controlled by other
cNodes, its misbehavior would be reported to the CH. For further iterations, such a rule helps
detect and discard compromised nodes which have been chosen as cNode because they normally
behaved in the past iterations and made false statement about their residual energies, unless they
continue to undertake normal communications.

5. The process increments the number k of iterations and continues its iterative execution by going
back to step 1.

6.3. Selecting cNodes among set SEN

At step 3 of the fair election process, cluster heads select the cNodes for the running iteration among the
nodes inside SEN sets. Note that any selection criterion could be used at this point. For instance, cNodes
could be randomly picked among elements of SEN until we have:

• enough cNodes (according to user’s choice)
• and all nodes covered by at least two cNodes, as mentioned above.

Some other selection criteria could include:

• residual energy of the nodes
• connectivity index (number of direct neighbors)
• signal power
• et cætera

Several criteria can even be combined to obtain a weighted score, such as for instance in equation 2:

sk[i] = (α×REk[i]) + (γ × cik[i]) + (δ × spk[i]) + (ζ × nslk[i]) (2)

where:

• sk[i] denotes the score for node i at iteration k.
• REk[i] remains the residual energy for said node and iteration.
• cik[i] would be the connectivity index of i.
• spk[i] is the average signal power as perceived by the neighbors of node i.
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• nslk[i] is the maximum value between a predetermined integer value and the number of iterations
before k since node i was last selected as a cNode.

• α, γ, δ and ζ would be constants fixed by the user.

This formula could be used to sort nodes in set SEN so that the cluster head can select the best possible
cNodes in regard to retained criteria.

Setting the criteria and the weights for the formula is up to the user of the network. It should be adapted
to the exact application and environment of the WSN. For instance it may be worth noting that for
networks made of static nodes, the connectivity index and the signal power of the nodes are not expected
to change much between two consecutive iterations. Therefore their weights should not be too high (in
regard to the other weights in the formula) so as to avoid selecting the same cNodes at each iteration. In
clustered networks, where all the nodes can reach their CH in a one-hop fashion, index connectivity or
signal power might not even be relevant (once again, depending also on the deployed application). But
even if we only work in clustered networks in this study—because they allow energy savings and a much
better scaling—we should nevertheless consider other architectures in that respect, for not all WSNs are
clustered. And many ones also work with mobile nodes. In such cases, evaluating the density of nodes
or the quality of the links in the area where the candidate cNodes are located becomes more interesting
because it generally has a higher impact on performances. Such observations remain valid for the chosen
constraint stating that each node must be watched over by at least two cNodes. While it is a good thing
in clusters where nodes are all gathered around their cluster head, it could be much harder to obtain in
some other topologies. In a star-like network for instance, where most sensors would be on branches and
only have two neighbors (one closer, one farther from the base station), it could result in all nodes being
selected as cNodes.

Remark on Limit cases A WSN usually consists of a huge number of sensors scattered over a
geographic zone. These sensors are grouped into clusters in such a way that the latter contain more
than two or three sensors in order to fulfill their monitoring functions. Note that even if a cluster has only
two nodes then the method will proceed as expected. After electing one of the cluster sensors as a cluster
head (CH) a remaining node would be a cNode until the next round of CH election. Another solution
might be to set a quorum of the cluster nodes which should be reached, otherwise cNode selection shall
be deactivated. As the method proposes to select at least two cNodes then the failure of a cNode will
not severely alter the control task. In the next step, the failing node will be discarded from the selection
process as long as it fails to send its residual energy to the CH. However, if the cluster consists of two
or three nodes, the failure of the cNode makes it needless to replace it with another one because the
resulting cluster would be ineffective.

7. NUMERICAL RESULTS AND COMPARISON OF THE THREE METHODS

7.1. Setting up simulations

Now that we have defined three distinct selection processes for cNodes, we present numerical results
obtained by simulation so as to compare the algorithms and to evaluate their relative performances. The
ns-2 software was used for this task. The simulations are based on a square grid of one hundred sensors,
plus the cluster head (located at the centre of the square). We assume that all sensor nodes are using the
same communication range. See Figure 5

Table I sums up the main parameters that were used for the simulations.
Evaluation of the detection mechanism itself (e.g., in function of the number of cNodes in the cluster)

has been realized in previous works, and it is not discussed again in this article [14].
Here the main purpose of the simulations is to compare the three selection methods. Hence a running

a distinct “scenario” consists in choosing:

• one of those three mechanisms;
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CH

Figure 5. A 10× 10 regular-grid cluster of size a

Table I. Simulation parameters

PARAMETER VALUE

Simulation length 3,600 seconds
Number of sensors 100 (+ cluster head)
Number of cNodes 7–10 (depending on scenario)
Number of compromised nodes 1
Frequency for renewing the cNodes set every 10 seconds
Length of initial phase for democratic election 60 seconds
Mobility of the nodes null

PARAMETER
VALUE VALUE

(NORMAL SENSORS) (COMPROMISED SENSOR)

Emission rate 1 kB/s 35 kB/s
Packets length 500 bytes 100 bytes
Interval random (Poisson) constant
Consumption for emission 0.660 W 0.660 W
Consumption for reception 0.395 W ignored
Initial energy amount 10 J —∞ (dep. on sc.) ∞

• the number of cNodes that will run for every period;
• the initial energy amount for the sensors.

All graph display, for a given energy amount, the values obtained with five distinct scenarios. To refer
easily to these scenarios, we will name them as follows:

|Stat10|
Ten cNodes, no renewal at all (“static” cNodes are selected in a random fashion just once, at the
beginning of the simulation)
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|Rand10|
Ten cNodes, with periodical renewal based on a random selection (first method); random selection
itself is performed by cluster head

|ResE10|
Ten cNodes, periodical renewal based on residual energy (second method)

|Demc10|
Ten cNodes, periodical renewal based on democratic election (third method)

|Demc07|
Seven cNodes only, periodical renewal based on democratic election again (third method);
changing the number of cNodes is done in order to observe its influence on the global consumption

All numerical results displayed on graphs are average values computed from the results obtained from ten
distinct instances (for each scenario). These instances differ by the seed provided to the pseudorandom
number generator of ns-2, and to the one used by the nodes for random selection processes.

The average energy consumption is computed from the values of the ninety-nine “sane” nodes, so they
do not include the consumption of the cluster head and of the compromised sensor. Those two special
nodes were provided with an unlimited energy amount for simulations:

• For cluster head: because it is mandatory to the functioning of the cluster, and because on a real
instance, emptying its battery would trigger an immediate renewal of the CH. Furthermore, it
receives all useful data sent by the nodes, so its energy consumption is high, and it would bend the
average values we need to study here.

• For the compromised node: because we do not want it to stop emitting during the scenario; and
again because the many packets it emits makes it consume a lot, which could bend the average
values we need to observe. Also it is worth noting that this could be a real case scenario, if an
attacker adds a more powerful node to the network (e.g., a laptop). In such case, the node might
not abide by the same energy rules.

7.2. Numerical results

7.2.1. Energetic consumption A first series of simulation instances were executed with unlimited
available energy for the sensors (with regard to the length of the simulation, meaning the nodes could not
empty their battery during these instances). It makes it possible to observe the average energy amount
that was consumed by sensors with each selection method for the cNodes. The results are available on
Figure 6. They indicate a similar consumption for methods |Stat10| and |Rand10|, because the random
renewal of the cNodes does not cause by itself a high increase. Methods |ResE10| and |Demc10|
consume more energy because of the need to gather energy from the nodes, and because of additional
mechanisms used to secure the selection process.

Method |Demc10| costs more at the beginning of the simulation, as we can see by zooming in on
the graph close to its origin, as in Figure 7. For the two scenarios based on democratic election, the
consumption rises very quickly during the first minute: this is due to the initial phase (when all sensors
watch over their neighbors in addition to performing actual sensing). But there is a reversal between
the consumption of |ResE10| and |Demc10| shortly before reaching 40 minutes, given that with a
longer delay, |Demc10| consumes less energy than a method using vNodes. As for |Demc07|, it is
the least consuming method. This highlights the impact of the number of cNodes on the global energy
consumption in the cluster: the fewer the cNodes, the more energy we save.

So methods taking residual energy into account (|ResE10|, |Demc10|) are, for a given number of
cNodes, more demanding energywise. But it is also worth noting the load balancing they bring to the
cluster. Figure 8 shows the standard deviation regarding energy consumption for the same simulations.
We can observe that |Stat10| creates an increasing difference (in a linear fashion). Since cNodes are
always the same sensors, they are always the same assuming the more demanding task, thus increasing
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Figure 7. Average energy consumption for the sensors in function of elapsed time: zoom on the origin (initial
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the deviation with the other nodes. With |Rand10| method, the standard deviation rises quickly, but
slows down and reach a stable value (approximatively 6 J at the end of the simulation, not displayed
on the graph). This is because all sensors are selected approximatively the same number of time over
a long simulation delay, due to the law of large numbers. And yet the standard deviation remains very
high in comparison with those of |ResE10|, |Demc10| ans |Demc07|, all of them ensuring an excellent
balancing of the energy consumption inside the cluster—which was their initial objective.
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7.2.2. Network lifetime Two other sets of instances has been used to analyze the network lifetime. The
evolution of the number of remaining nodes has been observed for instances with 10 J (first set), and
then with 20 J (second set) for the initial energy amount of the sensors.

Figure 9 shows the number of nodes in activity depending on time, for a 10 J initial energy stock.
|Stat10| method is the one that preserves the nodes for the longest duration, and by far. This is because
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the cNodes are not renewed, and once they are “dead” there are no more high-consuming task running
in the cluster §

The random |Rand10| method is efficient to preserve energy inside the cluster. As the number of
selected cNodes is statistically a percentage of the global number of nodes inside the cluster (we select
k nodes in a random fashion, without checking whether they are still alive or not), reducing the number
of nodes does not produce any increase in the global consumption. In addition, the method is simple to
set up and produces little overhead.

|ResE10|, |Demc10| and |Demc07| are not as efficient for energy preservation. The consumption is
higher, be it because of the initial phase (|Demc10| and |Demc07|) or because of the use of vNodes.
Thus the first node dies sooner than with |Rand10|, and the other nodes follow very quickly:

• because the standard deviation for residual energy is very low inside the cluster, so when the
battery of a node reaches zero, it means that the over batteries are at a very low level as well;

• and because selecting as cNodes the 10 nodes with the most residual energy ensures that 10 cNodes
are always in use, preventing the accidental selection of dead nodes. As a consequence, when first
nodes die, the percentage of cNodes inside the cluster grows, increasing the average consumption
for remaining nodes and emptying their batteries quickly.

Of the last three methods, we can observe that |Demc07| is the most efficient here (because it uses
fewer cNodes), whereas |Demc10| is the least efficient because of the gap created by its initial phase.
But this gap can be filled: this is what is shown by Figure 10, which comes from the execution of similar
scenarios, but with 20 J (instead of 10) as initial energy amount. |Demc10| and |ResE10| consume
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Figure 10. Number of nodes still in activity in function of time—Initial energy: 20 J

a nearly equivalent amount of energy in this case. The |Stat10| and |Rand10| methods in regard to
Figure 9, but the nodes last twice as long. |Demc07| catches up (in efficiency) with |Rand10|, as this
higher initial amounts enable the nodes to run for a longer duration and to soften more the increase due
to the initial phase. With 10 J of initial energy, the nodes die soon after 20 minutes with |Demc07|, while

§ The tenth cNode appears to empty its battery long after the ninth in those simulations. This is because we have average values
compiled from several instances. On some executions, it may happen that the compromised node is randomly selected as one
of the cNode, but we ignore its consumption and lifetime on the graph, so for those few instances it is as if we had nine cNodes
only, and the “tenth” node to empty its battery does so much later.
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|Rand10| still has half of its sensors alive. But with 20 J of initial energy, nearly three quarters of the
nodes are dead for the |Rand10| method when the number drops for |Demc07|, little before 50 minutes.
With an initial energy amount set to an even higher value, the difference of the number of cNodes would
make the |Demc07| more efficient for the global consumption.

7.2.3. Detection rate The number of cNodes able to detect the attack is directly related to the number
of nodes still in activity inside the cluster, since nodes running out of power can no longer perform the
monitoring task. Figure 11 shows the average detection rates in time in simulation instances where a
10 J-high initial energy amount has been awarded to the nodes. The detection rate soon drops to zero
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Figure 11. Detection rate of the attack in function of time—Initial energy: 10 J

with the |Stat10| method: once the initially selected cNodes run out of battery power, there is no other
node able to detect the attack. |Rand10|, |ResE10| and |Demc10| all have a good detection level, with
5 cNodes on average detecting the attack—as long as most nodes remain in activity. |Demc07| method
has fewer nodes detecting the attack, usually between 3 or 4 cNodes, but for a total of 7 cNodes in activity
only. Detection runs over a longer duration than for |ResE10| and |Demc10|, given that nodes consume
less on the whole. But it does not competes well with the |Rand10| method, which has nodes detecting
the attack after 30 minutes of simulation.

It is worth noting that the position of the compromised node has a direct influencer over the number
of nodes detecting the attack. Its chance to get detected depends on the number of its neighbor sensors
indeed. For all simulation results provided in this section, the compromised node lays at the location
depicted on Figure 12, and it has got 61 direct neighbors (excluding the CH), which represent as many
potential cNodes¶. However monitoring a sensor does not systematically equals to detecting the bad
behavior of this node (for example, if many collisions occur and the cNode fails to register all packets
sent by compromised sensor).

This remark makes it possible to evaluate the probability that a rogue node has to escape monitoring
(i.e., to be watched by no cNode). With |ResE10|, |Demc10| and |Demc07| this probability is null as
long as there are enough nodes remaining in the cluster to enforce the constraint stating that all sensor

¶ The physical layer model used for the simulations does not have any random component: besides collisions, two nodes are
either within mutual transmission range without any loss due to weak signal power, or too far away to communicate at all
through direct transmission.
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CH

compromised node

direct neighbors

other sensors

Figure 12. Scheme of the cluster showing the location of the sixty-one direct neighbors (in blue) of the
compromised sensor (yellow node) as defined in simulations

must be covered by at least two cNodes. But the |Rand10| process is such that on some periods, all
cNodes could be elected among the complementary set to the direct neighbors of the compromised node
(that is, the set of green nodes on Figure 12). Let us compute this probability. With |Rand10|, cNodes
repartition follows a hypergeometric distribution. We can use the following formula to compute the
probability of k cNodes among the n = 10 to choose are selected among the n = 61 direct neighbors of
the compromised sensor, for a total of N = 100 candidates:

P (k) =

(
m
k

)(
N−m
n−k

)(
N
n

) =
m!

k! (m− k)!
× (N −m)!

(n− k)! ((N −m)− (n− k))!
× n! (N − n)!

N !

Hence the probability of the compromised sensor not being monitored by any cNode is of:

P (k = 0) ≈ 3, 6× 10−5 ≈ 1/27228

It is extremely low, but again, we have to keep in mind that “monitoring” is not equal to “detection”
Figure 13 shows the same result as the previous graph, but for an initial energy of 20 J. As for the

cluster lifetime, one can observe that the increased energy enabled the |Demc10| and |Demc07| to
compensate for their initial phase and to gain improved performances over |ResE10|. |Demc10| slowly
catches up with the |Rand10| method, but it will not reach equal performances since the democratic
election has a slightly higher data control overhead.

After studying the performances and characteristics of the different selection methods, we can now
highlight their pros and cons and provide recommendation depending on the configuration of deployed
network.

8. CHOOSING A SELECTION PROCESS

8.1. Choosing a process depending on the application

Several methods have been proposed in this article to select the cNodes, and their performances were
evaluated through software simulations. Here we sum up their properties and state what method is the
most adapted to a given case. Actually there is no such thing as a ”perfect method”, each one has its pros
and cons.
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Figure 13. Detection rate of the attack in function of time—Initial energy: 20 J

No renewal of the cNodes Not renewing the cNodes makes it possible to preserve the battery of the
sensors for a longer duration, but it does not bring a good security level to the network. The initial
cNodes are soon to run out of power and to fall off. In addition, if the selection is performed in such a
way that some nodes in the cluster are not covered by at least one cNode‖, then these nodes will never get
monitored. Thus setting up cNodes with no renewal is discouraged, unless cNodes have been determined
by the operator prior to network deployment and they dispose of better hardware (including a better
battery). In all other cases, one should rather not select any cNode at all instead of deploying a weak and
short-lasting security mechanism.

Periodical renewal: random selection The random based selection process is a good compromise
between security and network lifetime. This method is easy to set up. It brings little control data
overhead, and consumes little energy (beside the necessary increase caused by the monitoring task).
When the first nodes run out of power, the average number of cNodes is adapted so that the desired
percentage of cNodes remains stable. The load balancing is not as good as with other methods though,
and the application running in the network must be able to cope with the fact that some nodes will
exhaust their batteries sooner than the others. The security level of this process is not absolute, since
some sensors can be located outside the range area of cNodes for a given period. However the continual
renewal of the cNodes and the laws of probability should ensure that a compromised node should be
detected after a few periods at most.

Periodical renewal: selection based on residual energy The use of vNodes improves the security
of the selection process based on residual energy, but it makes the nodes consume a high amount of
energy. The balancing of the consumption inside the cluster is excellent, but it does not overtake the
performances obtained with the democratic election process, which consumes less on the whole (once
it has caught up for its initial phase). The only use case of this method would be a network where
residual energy equilibrium between sensors is important, but where sensors would only have short

‖Or actually by the minimum number of cNodes required to have a sensor convicted, since cluster head should not take their
decisions based on notifications from a single cNode.
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periods of activity, for instance, where all sensors would run for a few minutes, perform measurements,
and then reach an hibernation state for several hours. For all other cases, the democratic election is a
better solution.

Periodical renewal: democratic election The performances of the democratic election method are
similar to those of the selection based on residual energy in regard to the load balancing in the cluster,
which means that they are excellent. But the overall consumption is better, at least once the initial
phase has been compensated. However it remains far above the consumption reached by the random
selection process. The constraint enforcing coverage of all nodes by at least two cNodes ensures a high
monitoring ability, and the security of the mechanism is guaranteed by the “votes” of the cNodes helping
their cluster head to designate their successors. This method has another advantage; by reusing the data
collected through nodes monitoring, it is possible to use other factors to select the nodes. These may
include signal power, connectivity index of trust value. This method is recommended for applications
with strong constraints on load balancing, and for which the entirety of the set of sensors must remain
alive as long as possible.

Pros and cons of each method are summed up in Table II. As for Table III, it displays the use cases for
those processes.

Table II. Pros and cons of the different selection methods

METHOD ADVANTAGES DRAWBACKS

No renewal • Preservation of non selected nodes • Bad monitoring

Random selection

• Moderate energy consumption
• Easy to implement
• The number of cNodes remains a
percentage of the active sensors
• Good turnover of the nodes; random
process, which prevents the attacks

• Moderate balancing of the energy
consumption inside the cluster
• Some sensors could escape monitoring
during some periods

Selection based on
residual energy

• Excellent load balancing
• All sensors are monitored by at least
two cNodes

• Adding vNodes is a constraint; it costs
more energy and makes the scheme more
complex to implement
• Consumes a lot of energy

Democratic election

• Excellent load balancing
• All sensors are monitored by at least
two cNodes
• Moderate energy consumption (after
initial phase)
• Can be adapted to take other parameters
into account for the selection

• Initial phase consumes a high amount
of energy

8.2. Adapting the process to the network

8.2.1. Number of cNodes The numerical results presented in former section, and especially the relative
performances of the two scenarios based on democratic election with seven or ten cNodes, highlight
the importance of the number of cNodes in the cluster on energy saving. As the cNodes have a higher
consumption, the more they are, the faster the energy is consumed in the network. But at the same time
the probability to detect the attack increases. Thus it is interesting to observe what the optimal number of
cNodes is so as to get a good coverage of the cluster without loosing too much energy. In our case, using
only seven cNodes seems reasonable, in particular with methods that ensure a minimal coverage of all
the sensors. With a lower number of sentries, the stakes of some sensors not being covered get high.
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Table III. Proposed use cases for the selection methods

METHOD USE CASE

No renewal
Highly discouraged in general (provided security is not worth loosing
energy because of this scheme, unless dedicated hardware is used)

Random selection
Applications for which security is not the highest priority, and for
which the operator wants to keep sensors alive as long as possible (but
not necessarily all sensors)

Selection based on residual energy One would better use the democratic election process, unless the cluster
has very short periods of activity.

Democratic election

Applications for which security is essential, and where the entire set
of sensors must be kept alive together for the longest possible duration.
However we recommend against this method for applications enforcing
very short periods of activity for the cluster.

The number of cNodes to use also depends of the network topology. As a reminder, we have been
working in a cluster where all nodes are direct neighbors of the cluster head. If the cNodes are to
be deployed on another topology, for example, without any cluster, there may be different coverage
problems.

8.2.2. Constraints on cluster coverage The example of a star-like network was mentioned in
Subsection 6.3, and is depicted on Figure 14. With such a topology, it is necessary to adapt (or to cancel)
the rule stating that each sensor should be monitored by at least two cNodes: otherwise, all the sensors
will be selected. And yet this rule remains very useful in clustered networks such as the one we have

Base station

Figure 14. Scheme of a star-like network. The blue dashed circle represents the transmission range of a node.

been studying. Thus the operator needs to carefully study the expected topology of their network before
decided whether to implement it.

8.2.3. Detection mechanism Setting up an efficient intrusion detection system relies on a rigorous
implementation of a well-designed algorithm run by the cNodes to detect suspect behaviors. No
particular recommendation is provided here about this algorithm, but it remains essential to establish
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the comprehensive specifications of the network, including expected use cases and the value of variables
for normal functioning, prior to deploying the network, so that to obtain the most accurate detection
rules. Formal models of the system may also be relevant. We have proposed in other studies some formal
modeling of the detection process [47] as well as of the interactions between legitimate and compromised
sensors [48]

9. CONCLUSION

The use of monitoring nodes in a clustered wireless sensor networks represents an efficient and scalable
method for detecting denial of service attacks. As monitoring entails a higher energy consumption for
the sentry nodes, periodically renewing the set of cNodes is compulsory. So far there has been little work
on the detailed implementation of the designation process for this set. In this paper we proposed three
different methods to perform the selection of the monitoring nodes in an energy-efficient and secure way.
Each method has its pros and cons: random selection is low consuming and easy to set up, but can lead
to coverage issues; mechanisms based on residual energy of the nodes, including democratic election
process, tend to provide a better load balance over the clusters, but the overall consumption gets higher
because of additional security measures that are needed to prevent compromised sensors to monopolize
the cNode roles. The selection processes have been extensively tested through simulations, and the
numerical results obtained show that effective global consumption and energy balancing correspond
to expectations. This leads to the description of the different recommended use cases for each selection
process.

Future work leads include looking for other possible selection mechanisms so as to improve even more
the consumption and the security of the scheme. Working with other detection methods, for example, by
running other intrusion detection systems (not based on rules), would constitute an interesting approach
as well. We also intend to vary the involved network applications so as to obtain clusters with different
levels of activity (depending on geographical areas), as well as to use different network topologies (star-
like clusters, or non-clustered networks for instance). All of these should, again, be tested with software
simulations; but we also plan to use real hardware to implement our selection methods on a physical test
bed.

Another angle of approach resides in the use of formal modeling tools, which can be used to represent
the system and to extract properties and performance indices about it. In previous studies we have used
models such as Markov chains, Petri networks, timed and hybrid automata, and game theory to analyze
the selection process or the interactions between legitimate and compromised nodes, but these leads are
to be further investigated. We have not been so far as running actual model checking tools, for instance.
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