> A clustering method for wireless sensor networks

 $\begin{array}{cccc} \text{S. Fouchal}^1 & \text{Q. Monnet}^2 & \text{D. Mansouri}^3 \\ & \text{L. Mokdad}^2 & \text{M. Ioualalen}^3 \end{array}$

¹LSIIT (BFO)²LACL³LSIUniversity ofUniversity ofUSTHBStrasbourg (FR)Paris-Est (FR)(DZ)

Context

New clustering algorithm

- General method to cluster any type of data
- **FFUCA** (*Fast and Flexible Unsupervised Clustering Algorithm based on ultrametric properties*)

Wireless Sensor Networks (WSNs)

- WSNs: frequent use of clustering
- purpose: better results than existing algorithms

Outline

WSNs and clustering algorithms

(2) FFUCA: an algorithm based on ultrametric properties

Complexity and Comparison with LEACH

Wireless Sensor Networks (WSNs) Clustering algorithms

Wireless Sensor Networks (WSNs)

Small devices

- realize measurements (sensors)
- ad-hoc communication
- linked to a base station (BS)

Restricted resources

- few computation capabilities
- few memory available
- few energy available (battery)

Wireless Sensor Networks (WSNs) Clustering algorithms

Routing in WSNs

Wireless Sensor Networks (WSNs) Clustering algorithms

Routing in WSNs

Wireless Sensor Networks (WSNs) Clustering algorithms

Clustering in WSNs

Wireless Sensor Networks (WSNs) Clustering algorithms

Clustering in WSNs

Wireless Sensor Networks (WSNs) Clustering algorithms

Clustering and routing in WSNs

Principle Application

Definitions

What is "ultrametric distance"?				
Distance				
d is a distance if and only if for any couple $(s_1; s_2)$:				
•	$d(s_1,s_2)=d(s_2,s_1)$	(symmetry)		
٩	$d(s_1,s_2) \geqslant 0$, and $d(s_1,s_2) = 0 \Leftrightarrow s_1 = s_2$	(positive definiteness)		
9	$d(s_1,s_2)\leqslant d(s_1,s_3)+d(s_3,s_2)$	(triangle inequality)		

....

Principle Application

Definitions

What is "ultrametric distance"?				
Distance				
d is a distance if and only if for any couple $(s_1; s_2)$:				
•	$d(s_1,s_2)=d(s_2,s_1)$	(symmetry)		
٩	$d(s_1,s_2) \geqslant 0$, and $d(s_1,s_2) = 0 \Leftrightarrow s_1 = s_2$	(positive definiteness)		
•	$d(s_1, s_2) \leqslant d(s_1, s_3) + d(s_3, s_2)$	(triangle inequality)		

Ultrametric distance

d is an ultrametric distance if and only if for any triple $(s_1; s_2; s_3)$:

- *d* is a distance
- $d(s_1, s_2) \leq \max(d(s_1, s_3), d(s_3, s_2))$ (strong triangle inequality)

The main steps of FFUCA

6 main steps:

- Choose uniformly at random a sample elements from the global set
- 2 Execute a classic hierarchical clustering algorithm with d on the sample
- Represent the distances in the resulting dendogram: the ultrametric space is built
- Oeduce the clusters' intervals (thresholds)
- Ochoose uniformly at random one representative per cluster from the result of Step 2
- Pick the rest of data and compare them, according to d, with the clusters' representatives;
 - if it is close (d(s_i, s_j) ≤ threshold_j) to one or more representative, then add it to the same cluster
 - else create a new cluster

Principle of FFUCA

Principle

- use energy consumption for communication between two nodes as a distance
- Choose a sample elements from whole set and order them with classic algorithm (steps 1, 2, 3)
- use the ordered elements as a basis to build the clusters (steps 4, 5, 6)

Fouchal, Mansouri, Monnet, Mokdad, Ioualalen

Principle Application

Application of FFUCA (1)

Step 1

Choose uniformly at random a sample elements from the global set

Principle Application

Application of FFUCA (1)

Step 1

Choose uniformly at random a sample elements from the global set

- application: choose a sample nodes from the network
- for instance: with n = 1000, choose m = 20 random nodes

Principle Application

Application of FFUCA (1)

Step 1

Choose uniformly at random a sample elements from the global set

- application: choose a sample nodes from the network
- for instance: with n = 1000, choose m = 20 random nodes

Remarks

- *m* depends on *n*: the larger *m*, the pettier *m* is compared to *n*. For instance:
 - $n = 100\ 000,\ d_e(s_i, s_j) \in [0; 0.5],\ m = 500 = \frac{n}{200}$
 - n = 600, $d_e(s_i, s_j) \in [0; 300]$, $m = 15 = \frac{n}{40}$

Principle Application

Application of FFUCA (2)

Step 2

Execute a classic hierarchical clustering algorithm with d on the sample

Principle Application

Application of FFUCA (2)

Step 2

Execute a classic hierarchical clustering algorithm with d on the sample

 classic algorithms: UPGMA, WPGMA ((Un)Weighted Pair Group Method with Arithmetic mean)

Principle Application

Application of FFUCA (2)

Step 2

Execute a classic hierarchical clustering algorithm with d on the sample

- classic algorithms: UPGMA, WPGMA ((Un)Weighted Pair Group Method with Arithmetic mean)
- for instance: apply WPGMA to the sample nodes
- now sample nodes are ordered

Principle Application

Application of FFUCA (3)

Step 3

Represent the distances in the resulting dendogram: the ultrametric space is built

Principle Application

Application of FFUCA (3)

Step 3

Represent the distances in the resulting dendogram: the ultrametric space is built

• let's do it...

Principle Application

Application of FFUCA (4)

Step 4

Deduce the clusters' intervals (thresholds)

Application of FFUCA (4)

Step 4

Deduce the clusters' intervals (thresholds)

- the sample nodes set the thresholds with regard to their respective distances and to the order resulting from Step 3
- each node from sample sets its own threshold

Principle Application

Application of FFUCA (5)

Step 5

Choose uniformly at random one representative per cluster from the result of Step 2 $\,$

Principle Application

Application of FFUCA (5)

Step 5

Choose uniformly at random one representative per cluster from the result of Step 2 $\,$

- choose sample nodes from Step 1 as representatives
- those nodes become cluster heads (CHs)

Application of FFUCA (6)

Step 6

Pick the rest of data and compare them, according to d, with the clusters' representatives;

- if it is close to one or more representative, then add it to the same cluster (i.e. if d(s_i, s_j) ≤ threshold_j)
- else create a new cluster

Application of FFUCA (6)

Step 6

Pick the rest of data and compare them, according to d, with the clusters' representatives;

- if it is close to one or more representative, then add it to the same cluster (i.e. if d(s_i, s_j) ≤ threshold_j)
- else create a new cluster

Complexity of FFUCA

Several cases

- rare worst case: $\mathcal{O}(n^2) + \mathcal{O}(m^2)$
- most cases: $\mathcal{O}(n) + \mathcal{O}(m^2) = \mathcal{O}(n) + \epsilon$

Worst case happens when clustering provides only singletons.

Comparison with LEACH

FFUCA

- different thresholds according to sample nodes order
- "sticks better" to nodes repartition

Fouchal, Mansouri, Monnet, Mokdad, Ioualalen

LEACH

• every CH emits with the same power, so all clusters have the same radius

A clustering method for WSNs

Conclusion and future works

Application of FFUCA to WSNs

- Oustering is made according to "energy consumption" distance.
 → energy efficient
- Complexity in most case is O(n) + ε (rare worst case: O(n²) + ε).
 → fast, scalable

We are now working on...

- detailing and improving the implementation
- simulating on ns-3 network simulator
- comparing with LEACH algorithm
- comparing with other clustering algorithms (HEEDS...)

The end

Thank you!

Questions?

Fouchal, Mansouri, Monnet, Mokdad, Ioualalen A clustering method for WSNs